搜尋
首頁科技週邊人工智慧為深度學習選擇最好的GPU

在進行機器學習專案時,特別是在處理深度學習和神經網路時,最好使用GPU而不是CPU來處理,因為在神經網路方面,即使是一個非常基本的GPU也會勝過CPU。

為深度學習選擇最好的GPU

但是你應該買哪種GPU呢?本文將總結需要考慮的相關因素,以便可以根據預算和特定的建模要求做出明智的選擇。

為什麼 GPU 比 CPU 更適合機器學習?

CPU(中央處理器)是電腦的主力,它非常靈活,不僅需要處理來自各種程式和硬體的指令,處理速度也有一定的要求。為了在這種多任務環境中表現出色,CPU 具有少量且靈活快速的處理單元(也稱為核)。

GPU(圖形處理單元)GPU在多工處理方面較不靈活。但它可以並行執行大量複雜的數學計算。這是透過擁有更多數量的簡單核心(數千到上萬)來實現的,這樣可以同時處理許多簡單的計算。

並行執行多個計算的要求非常適合於:

  • 圖形渲染-移動的圖形物件需要不斷地計算它們的軌跡,這需要大量不斷重複的平行數學計算。
  • 機器和深度學習-大量的矩陣/張量計算,GPU可以並行處理。
  • 任何類型的數學計算,可以拆分為平行運行。

在Nvidia自己的部落格上已經總結了CPU和GPU的主要差異:

為深度學習選擇最好的GPU

張量處理單元(TPU)

隨著人工智慧和機器/深度學習的發展,現在已經有了更專門的處理核心,稱為張量核(Tensor cores)。在執行張量/矩陣計算時,它們更快更有效。因為我們在機器/深度學習中所處理的資料型態就是張量。

雖然有專用的tpu,但一些最新的GPU也包含許多張量核,我們會在後面總結。

Nvidia vs AMD

這將是一個相當短的部分,因為這個問題的答案肯定是Nvidia

雖然可以使用AMD的gpu進行機器/深度學習,但在寫本文時,Nvidia的GPU具有更高的相容性,並且通常更好地整合到TensorFlow和PyTorch等工具中(例如目前PyTorch的AMD GPU的支援還只能在Linux上使用)。

使用AMD GPU需要使用額外的工具(ROCm),這個會有一些額外的工作,而且版本可能不會很快更新的。這種情況將來可能會有所改善,但現在為止,最好還是使用Nvidia。

GPU選擇的主要屬性

選擇一個夠完成機器學習任務並且符合預算的GPU,基本上歸結為四個主要因素的平衡:

  • GPU有多少記憶體?
  • GPU有多少CUDA和/或張量核?
  • 卡使用什麼晶片架構?
  • 功耗需求是多少(如果有) ?

以下將逐一探討這些方面,希望能讓你更能理解什麼對你來說是重要的。

GPU記憶體

答案是,越多越好!

這實際上取決於你的任務,以及這些模型有多大。例如,如果你正在處理圖像、視頻或音頻,那麼根據定義,你將處理相當大量的數據,GPU RAM將是一個非常重要的考慮因素。

總有辦法解決記憶體不足的問題(例如減少批次大小)。但是這將會浪費訓練的時間,因此需要很好地平衡需求。

根據經驗,我的建議如下:

  • 4GB:我認為這是絕對的最小值,只要你不是在處理過於複雜的模型,或者大的圖像、視頻或音頻,這個在大多數情況下能工作,但是達不到日常使用的需要。如果你剛起步,想嘗試一下又不想全力投入,那麼可以從它開始
  • 8GB:這是一個日常學習很好的開始,可以在不超過RAM限制的情況下完成大多數任務,但在使用更複雜的圖像、視訊或音訊模型時會遇到問題。
  • 12GB:我認為這是科研最基本的要求。可以處理大多數較大的模型,甚至是那些處理影像、視訊或音訊的模型。
  • 12GB :越多越好,你將能夠處理更大的資料集和更大的批次大小。超過12GB才是價格真正開始上漲的開始。

一般來說,如果成本相同的話,選擇「速度較慢」但記憶體較大的卡片會更好。請記住,GPU的優勢是高吞吐量,這在很大程度上依賴可用的RAM來透過GPU傳輸資料。

CUDA核心與Tensor 核心

這其實很簡單,越多越好。

先考慮RAM,然後就是CUDA。對於機器/深度學習來說,Tensor 核比CUDA核更好(更快,更有效)。這是因為它們是為機器/深度學習領域所需的計算而精確設計的。

但這並不重要,因為CUDA核心已經夠快了。如果你能得到一張包含Tensor 核的卡,這是一個很好的加分點,只是不要太糾結於它。

後面你會看到「CUDA」被提到很多次,我們先總結它:

CUDA核心-這些是顯示卡上的實體處理器,通常有數千個,4090已經1萬6了。

CUDA 11 -數字可能會改變,但這是指安裝的軟體/驅動程序,以允許顯示卡正常的工作。 NV會定期發布新版本,它可以像其他軟體一樣安裝和更新。

CUDA代數(或計算能力)-這描述了顯示卡卡在它的更新迭代的代號。這在硬體上是固定的,因此只能透過升級到新卡來改變。它由數字和一個代號來區分。例:3。 x[Kepler],5。 x [Maxwell], 6。 x [Pascal], 7。 x[Turing]和8。 x(Ampere)。

晶片架構

這其實比你想像的更重要。我們這裡不討論AMD,我的眼裡只有」老黃「。

上面我們已經說了,30系列的卡片就是Ampere架構,最新的40系列是 Ada Lovelace。一般老黃都會使用一個著名科學家和數學家來對架構命名,這次選擇的是著名英國詩人拜倫之女,建立了循環和子程序概念的女數學家、計算機程序創始人Ada Lovelace來命名。

了解對於卡片的運算能力,我們要了解2個面向:

  • 顯著的功能改進
  • 這裡一個重要的功能就是,混合精準度訓練:

使用精確度低於32 位元浮點數的數字格式有許多好處。首先它們需要更少的內存,從而能夠訓練和部署更大的神經網路。其次它們需要更少的記憶體頻寬,從而加快資料傳輸操作。第三數學運算在精度降低的情況下運行得更快,尤其是在具有 Tensor Core 的 GPU 上。混合精度訓練實現了所有這些好處,同時確保與完全精度訓練相比不會失去特定於任務的準確性。它透過識別需要完全精確度的步驟並僅對這些步驟使用 32 位元浮點而在其他任何地方使用 16 位元浮點來實現這一點。

這裡是Nvidia 官方文檔,有興趣的可以看看:

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html

如果您的GPU 具有7.x (Turing) 或更高的架構,才有可能使用混合精確訓練。也就是說 桌面的RTX 20 系列或高版本,或伺服器上的 “T”或“A”系列。

混合精準度訓練具有如此優勢的主要原因是它降低了RAM 使用率,Tensor Core 的GPU會加速混精度訓練,如果沒有的話使用FP16也會節省顯存,可以訓練更大的批次大小,間接提升訓練速度。

是否會被棄用

如果你對RAM有特別高的要求,但又沒有足夠的錢買高階卡,那麼你可能會選擇二手市場上的老款GPU。這有一個相當大的缺點…這張卡的壽命結束了。

一個典型的例子就是Tesla K80,它有4992個CUDA核心和24GB的RAM。 2014年,它零售價約為7,000美元。現在的價格從 150到170美元不等!(鹹魚的價格600-700左右)這麼小的價格卻有這麼大的內存,你一定很興奮。

但是這有一個非常大的問題。 K80的運算架構是3.7 (Kepler),CUDA 11起已經不支援(目前CUDA版本為11.7)。這意味著這張卡已經廢了,所以它才賣的這麼便宜。

所以在選擇2手卡時一定要看清楚是否支援最新版本的驅動程式和CUDA,這是最重要的。

高階遊戲卡 VS 工作站/伺服器卡

老黃基本上把卡片分成了兩個部分。消費性顯示卡與工作站/伺服器的顯示卡(即專業顯示卡)。

這兩個部分之間有明顯的區別,對於相同的規格(RAM, CUDA內核,架構),消費性顯示卡通常會更便宜。但是專業卡通常會有更好的質量,而且較低的能源消耗(其實渦輪的噪音挺大的,放機房還可以,放家裡或是試驗室有點吵)。

高階(非常昂貴)的專業卡,你可能會注意到它們有很大的RAM(例如RTX A6000有48GB, A100有80GB!)。這是因為它們通常直接針對3D建模、渲染和機器/深度學習專業市場,這些市場需要高水準的RAM。再說一次,如果你有錢,買A100就對了!(H100是A100的新版,目前無法評價)

但是我個人認為,我們還是選擇消費者的高端遊戲卡,因為如果你不差錢,你也不會看這篇文章,對吧

選擇建議

所以在最後我根據預算和需求提出一些建議。我將其分為三個部分:

  • 低預算
  • 中預算
  • #高預算

高預算不考慮任何超出高端消費顯示卡。還是那句話如果你有錢:A100,H100隨便買。

本文會包含在二手市場買到的卡片。這主要是因為我認為在低預算的情況下,二手是可以考慮的。這裡還包括了專業桌面系列卡(T600、A2000和A4000),因為它的一些配置比同類消費類顯示卡稍差,但功耗明顯更好。

低預算

為深度學習選擇最好的GPU

中預算

為深度學習選擇最好的GPU

#高預算

為深度學習選擇最好的GPU

為深度學習選擇最好的GPU

##線上/雲端服務

如果你決定花錢買顯示卡不適合你,你可以利用GoogleColab,它可以讓你免費使用GPU。

但這是有時間限制的,如果你使用GPU太長時間,他們會把你踢出去,然後回到CPU上。如果GPU處於非活動狀態太長時間,可能是在你寫程式碼的時候,它也會把GPU拿回來。 GPU也是自動分配的,所以你不能選擇你想要的確切的GPU(你也可以每月9.9刀弄個Colab Pro,我個人覺得要比低預算好很多,但是要求有梯子,$49.99的Colab Pro 有點貴,不建議)。

在寫本文時,透過Colab可以得到以下GPU:

在前面也提到了,K80有24GB的RAM和4992個CUDA核心,它基本上是兩個K40卡連在一起。這意味著當你在Colab中使用K80時,你實際上可以存取一半的卡,所以也就是只有12GB和2496個CUDA核心。 ######總結######最後現在4090還是處於耍猴的狀態,基本上要搶購或加價找黃牛######但是16384 CUDA 24GB,對比3090 的10496 CUDA ,真的很香。 ######而4080 16G的9728CUDA 如果價格能到7000內,應該是性價比很高的選擇。 12G的 4080就別考慮了,它配不上這個名字。 ######對於AMD的 7900XTX 應該也是一個很好的選擇,但是相容性是個大問題,如果有人測試的話可以留言。 ######40系列老黃一直在耍猴,所以如果不著急的話還再等等把:#########你不買,我不買,明天還能降兩百## ####

以上是為深度學習選擇最好的GPU的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
AI動作人物趨勢,解釋 - 以及如何製作自己的AI動作人物趨勢,解釋 - 以及如何製作自己的Apr 16, 2025 am 11:22 AM

Openai推出了由GPT-40提供動力的新圖像生成器後,這種病毒熱潮立即吸引了渴望實驗的用戶。創建自己或其他任何人的玩具版本(包括寵物,是的),類似地工作:uplo

6個CHATGPT提示獲得增強品牌的播客邀請函6個CHATGPT提示獲得增強品牌的播客邀請函Apr 16, 2025 am 11:16 AM

許多企業主圍坐在等待永遠不會到達的邀請,因為獲得播客面試需要策略和一致的行動。今天採取行動。 這些提示將使您成為完美的客人,並降落這些職業

5強大的AI提示可以提高任何業務想法5強大的AI提示可以提高任何業務想法Apr 16, 2025 am 11:11 AM

幸運的是,這是一個生成AI的領域,可以非常有幫助。不,它不會帶來萬無一失的策略。但這可以幫助您集思廣益,研究市場以及微調營銷內容和消息傳遞。 不是

Smart研究生:AI時代的職業建議Smart研究生:AI時代的職業建議Apr 16, 2025 am 11:10 AM

只有今年只有不同。不確定。 關稅戰爭正在進行中,這不僅僅是事實。 AI是最近抓撓和靈魂搜索的根本原因。國家青年慈善機構最近對

有效的加速主義或親社會AI。 AI的未來是什麼?有效的加速主義或親社會AI。 AI的未來是什麼?Apr 16, 2025 am 11:09 AM

加速主義者的願景:全速前進 有效的加速度,即短期內被稱為E/ACC,在2022年左右出現,是一種技術優越的運動,在矽谷及其他地區的核心中獲得了巨大的吸引力,其核心,E/ACC提倡快速,

Excel中的相對,絕對和混合參考是什麼?Excel中的相對,絕對和混合參考是什麼?Apr 16, 2025 am 11:03 AM

介紹 我最初的電子表格經歷令人沮喪,因為複制時公式的行為不可預測。 那時我不了解細胞引用,但是掌握親戚,絕對和混合的參考文獻徹底改變了我的廣播。

Word2Vec的智能主題電子郵件線生成Word2Vec的智能主題電子郵件線生成Apr 16, 2025 am 11:01 AM

本文演示瞭如何使用Word2Vec嵌入生成有效的電子郵件主題行。 它可以指導您建立一個利用語義相似性來創建上下文相關主題行,改善電子郵件營銷的系統

數據分析師的未來數據分析師的未來Apr 16, 2025 am 11:00 AM

數據分析:導航不斷發展的景觀 想像一個世界,數據不僅是數字,而且是每個管理決定的基石。 在這個動態的環境中,數據分析師是必不可少的,將原始數據轉換為可操作的

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。