搜尋
首頁後端開發Python教學Python循環和迭代器怎麼使用

Python循環和迭代器怎麼使用

May 20, 2023 pm 03:04 PM
python

循環概述

在 Python 中,與大多數語言一樣,有兩個基本的循環:whilefor

while

while循環是非常基本的。

clue = None
while clue is None:
    clue = searchLocation()

clue is None在這種情況下,只要迴圈條件的計算結果為True,就會執行迴圈的程式碼。

在Python 中,我們還有幾個有用的關鍵字:break立即停止循環,同時continue跳到循環的下方一次迭代

break最有用的方面之一是如果我們想要運行相同的程式碼,直到使用者提供有效的輸入。

while True:
    try:
        age = int(input("Enter your age: "))
    except ValueError:
        print(f"Please enter a valid integer!")
    else:
        if age > 0:
            break

一旦我們遇到該break語句,我們就退出迴圈。當然,上面是一個較複雜的例子,但它證明了這一點。你也經常看到while True:在遊戲循環中使用。

注意:如果你曾經使用過任何語言的循環,那麼你已經熟悉了無限循環(死循環)。這通常是由while條件計算結果為True 且迴圈中沒有break語句引起的。

for

來自Java、C 或許多類似的ALGOL 風格的語言,你可能很熟悉三方for 迴圈:for i := 1; i &lt ; 100; i := i 1。我不了解你,但當我第一次遇到這種情況時,它嚇壞了我。我現在對它很滿意,但它不具備 Python 的優雅簡潔。

Python 的for迴圈看起來大不相同。與上述偽代碼等效的 Python 程式碼是...

for i in range(1,100):
    print(i)

range()是 Python 中一個特殊的“函數”,它會傳回一個序列。 (從技術上講,它根本不是一個函數。)

這是Python 令人印象深刻的地方——它迭代了一種特殊類型的序列,稱為iterable,我們稍後會談到。

目前,最容易理解的是我們可以迭代一個順序資料結構,例如一個陣列(在 Python 中稱為「列表」)。

因此,我們可以這樣做...

places = ['Nashville', 'Norway', 'Bonaire', 'Zimbabwe', 'Chicago', 'Czechoslovakia']
for place in places:
    print(place)

print("...and back!")

我們得到這個...

Nashville
Norway
Bonaire
Zimbabwe
Chicago
Czechoslovakia
...and back!
for...else

Python 在其循環中還有另一個獨特的小技巧:else子句!迴圈完成後,沒有遇到break語句,就會執行else。但是,如果手動中斷循環,它將else完全跳過。

places = ['Nashville', 'Norway', 'Bonaire', 'Zimbabwe', 'Chicago', 'Czechoslovakia']
villain_at = 'Mali'

for place in places:
    if place == villain_at:
        print("Villain captured!")
        break
else:
    print("The villain got away again.")

由於「Mali」不在清單中,因此我們看到了「The villain got away again.」的訊息。但是,如果我們將值更改villain_atNorway,我們將看到“Villain captured!” ,而看不到了“The villain got away again.”。

存在do...whiel嗎?

Python 沒有do...while迴圈。如果你正在尋找這樣的循環方式,典型的 Python 是使用while True:帶有內部break條件的 ,就像我們之前示範的那樣。

資料結構(容器)

Python 有許多保存資料的容器或資料結構。我們不會深入討論其中的任何一個,但我想快速瀏覽一下最重要的部分:

list

list是一個可變序列(其實就是一個陣列)。

它是用方括號定義的[ ],你可以透過索引來存取它的元素。

foo = [2, 4, 2, 3]

print(foo[1])
>>> 4

foo[1] = 42
print(foo)
>>> [2, 42, 2, 3]

儘管對它沒有嚴格的技術要求,但典型的約定是清單只包含相同類型的元素(「同質」)。

tuple

tuple是一個不可變的序列。一旦你定義了它,你在技術上就不能改變它(回想一下之前不變性的含義)。這意味著在定義tuple後,你不能在tuple中新增或刪除元素。

一個tuple是在括號中定義的( ),你可以透過索引存取它的元素。

foo = (2, 4, 2, 3)

print(foo[1])
>>> 4

foo[1] = 42
>>> TypeError: 'tuple' object does not support item assignment

與清單不同,標準約定允許tuple包含不同類型的元素(「異質」)。

set

set是一个无序的可变集合,保证没有重复。记住“无序”很重要:不能保证单个元素的顺序!

一个集合在花括号中定义{ },但如果你想要一个空集合,你可以使用foo = set(), 或者foo = {}创建一个空的dict. 你不能通过索引访问它的元素,因为它是无序的。

foo = {2, 4, 2, 3}

print(foo)
>>> {2, 3, 4}

print(foo[1])
>>> TypeError: 'set' object does not support indexing

对于要添加到集合中的对象,它也必须是可散列的(hash)。一个对象是可散列的,如果:

  1. 它定义了方法__hash__(),该方法将哈希值(hash)作为整数返回。(见下文)

  2. 它定义了__eq__()比较两个对象的方法。

对于同一个对象(值),一个有效的散列值(hash)应该总是相同的,并且它应该是合理的唯一的,因此另一个对象返回相同的散列是不常见的。(两个或多个具有相同哈希值的对象称为哈希冲突,它们仍然会发生。)

dict

dict(字典)是键值数据结构。

它在花括号中定义{ }:用于分隔键和值。它是无序的,所以你不能通过索引访问它的元素;但是你可以通过[ ]加键值访问元素。

foo = {'a' : 1, 'b' : 2, 'c' : 3, 'd' : 4}

print(foo['b'])
>>> 2

foo['b'] = 42
print(foo)
>>> {'a': 1, 'b': 42, 'c': 3, 'd': 4}

只有可散列的对象可以用作字典键。(有关set哈希性的更多信息,请参阅官网的部分。)

其他

除了基础之外,Python 还提供了额外的容器/数据结构。可以在内置模块collections中找到它们。

拆包

有一个重要的 Python 语法我们还没有讨论过,但很快就会派上用场。我们可以将容器中的每个元素分配给一个变量!这称为拆包

当然,我们需要确切地知道我们要拆包多少才能结束,否则我们会得到一个ValueError的异常。

让我们看一个使用tuple元组的基本示例。

fullname = ('Carmen', 'Sandiego')
first, last = fullname
print(first)
>>> Carmen
print(last)
>>> Sandiego

看第二行代码,我们可以列出多个要分配的变量,用逗号分隔。Python 将拆分等号右侧的容器,将每个值按从左到右的顺序分配给一个变量。

注意:记住,set是无序的!虽然你可以在技术上使用集合来执行此操作,但你无法确定将什么值分配给什么变量。不保证按顺序进行分配,集合的值的分配顺序通常是偶然的!

in

Python 提供了一个关键字in ,用于检查是否在容器中找到了特定元素。

places = ['Nashville', 'Norway', 'Bonaire', 'Zimbabwe', 'Chicago', 'Czechoslovakia']

if 'Nashville' in places:
    print("Music city!")

这适用于许多容器,包括列表、元组、集合,甚至是字典键(但不是字典值)。

如果你希望你的自定义类之一支持in运算符,你只需要定义__contains__(self, item)方法,它应该返回Trueor False

迭代器

Python 的循环是配合我之前提到的迭代器一起使用前面提到的数据结构都是是可以使用迭代器迭代的对象。

好的,让我们从头开始。Python 容器对象,例如 list,也是一个可迭代对象,因为它的__iter__()方法,返回一个迭代器对象。

方法__next__()也是一个迭代器,在容器迭代器的情况下,返回下一项。即使是无序的容器,例如set(),也可以使用迭代器进行遍历。

__next__()不能返回任何其他内容时,它会抛出一个名为StopIteration的特殊异常。这可以使用try...except捕获异常。

让我们再看一下for遍历 list 的循环,例如...

dossiers = ['The Contessa', 'Double Trouble', 'Eartha Brute', 'Kneemoi', 'Patty Larceny', 'RoboCrook', 'Sarah Nade', 'Top Grunge', 'Vic the Slick', 'Wonder Rat']

for crook in dossiers:
    print(crook)

dossiers是一个list对象,它是一个可迭代的对象。当 Python 到达for循环时,它会做三件事:

  1. 调用iter(dossiers),依次执行dossiers.__iter__()。这将返回一个我们将调用的迭代器对象list_iter。这个迭代器对象将被循环使用。

  2. 对于循环的每次迭代,它都会调用next(list_iter),执行list_iter.__next__()并将返回的值分配给crook

  3. 如果迭代器抛出了特殊异常StopIteration,则循环结束,退出。

while True:如果我在循环中重写该逻辑可能会更容易理解......

list_iter = iter(dossiers)
while True:
    try:
        crook = next(list_iter)
        print(crook)
    except StopIteration:
        break

如果你尝试这两个循环,你会发现它们做的事情完全相同!

了解__iter__(),__next__()StopIteration异常的工作原理后,你现在可以使自己的类可迭代!

注意:虽然将迭代器类与可迭代类分开定义都可以,但你不一定必须这样做!只要这两种方法都在你的类中定义,并且__next__()行为适当,你就可以定义__iter__()return self.

值得注意的是迭代器本身是可迭代的:它们有一个__iter__()方法返回self

字典案例

假设我们有一本想要使用的字典......

locations = {
    'Parade Ground': None,
    'Ste.-Catherine Street': None,
    'Pont Victoria': None,
    'Underground City': None,
    'Mont Royal Park': None,
    'Fine Arts Museum': None,
    'Humor Hall of Fame': 'The Warrant',
    'Lachine Canal': 'The Loot',
    'Montreal Jazz Festival': None,
    'Olympic Stadium': None,
    'St. Lawrence River': 'The Crook',
    'Old Montréal': None,
    'McGill University': None,
    'Chalet Lookout': None,
    'Île Notre-Dame': None
    }

如果我们只想查看其中的每个项目,我们只需使用for循环。所以,这应该有效,对吧?

for location in locations:
    print(location)

哎呀!这只向我们展示了,而不是值。这并不是我们想要的,不是吗?

dict.__iter__()返回一个dict_keyiterator对象,该对象执行其类名的操作:它遍历键,但不遍历值。

同时获取键和值,我们需要调用locations.items()返回dict_items对象。dict_items.iter()返回 dict_itemiterator,它将字典中的每个键值对作为元组返回。

旧版说明:如果你使用的是 Python 2,则应改为调用locations.iteritems()

还记得刚才,当我们谈到拆包的时候吗?我们将每一对键值作为一个元组并拆分成两个变量。

for key, value in locations.items():
    print(f'{key} => {value}')

打印出以下内容:

Parade Ground => None
Ste.-Catherine Street => None
Pont Victoria => None
Underground City => None
Mont Royal Park => None
Fine Arts Museum => None
Humor Hall of Fame => The Warrant
Lachine Canal => The Loot
Montreal Jazz Festival => None
Olympic Stadium => None
St. Lawrence River => The Crook
Old Montréal => None
McGill University => None
Chalet Lookout => None
Île Notre-Dame => None

现在我们可以处理数据了。例如,我想在另一个字典中记录重要信息。

information = {}

for location, result in locations.items():
    if result is not None:
        information[result] = location

# Win the game!
print(information['The Loot'])
print(information['The Warrant'])
print(information['The Crook'])

print("Vic the Slick....in jaaaaaaaaail!")

这将找到 Loot、Warrant 和 Crook,并按正确顺序列出它们:

Lachine Canal
Humor Hall of Fame
St. Lawrence River
Vic the Slick....in jaaaaaaaaail!

自定义迭代器

我之前已经提到你可以制作自己的迭代器和迭代器,但现在来实现它!

想象一下,我们想方便保留一个代理列表,以便我们始终可以通过代理编号来识别它们。但是,有些代理是我们不能谈论的。我们可以通过将代理 ID 和名称存储在字典中,然后维护分类代理列表来轻松完成此操作。

注意:请记住,在我们对类的讨论中,Python 中实际上没有私有变量这样的东西。如果你真的打算保密,请使用行业标准的加密和安全实践,或者至少不要将你的 API 暴露给任何 VILE 操作员。;)

对于初学者,这是该类的基本结构:

class AgentRoster:
    def __init__(self):
        self._agents = {}
        self._classified = []

    def add_agent(self, name, number, classified=False):
        self._agents[number] = name
        if classified:
            self._classified.append(name)

    def validate_number(self, number):
        try:
            name = self._agents[number]
        except KeyError:
            return False
        else:
            return True

    def lookup_agent(self, number):
        try:
            name = self._agents[number]
        except KeyError:
            name = "<no>"
        else:
            if name in self._classified:
                name = "<classified>"
        return name</classified></no>

我们可以继续测试一下,只是为了后续:

roster = AgentRoster()

roster.add_agent("Ann Tickwitee", 2539634)
roster.add_agent("Ivan Idea", 1324595)
roster.add_agent("Rock Solid", 1385723)
roster.add_agent("Chase Devineaux", 1495263, True)

print(roster.validate_number(2539634))
>>> True
print(roster.validate_number(9583253))
>>> False

print(roster.lookup_agent(1324595))
>>> Ivan Idea
print(roster.lookup_agent(9583253))
>>> <no>
print(roster.lookup_agent(1495263))
>>> <classified></classified></no>

太好了,这完全符合预期!现在,如果我们希望能够遍历整个字典怎么办。

但是,我们不想直接访问roster._agents字典,因为这将忽略这个类的整个“分类”方面。我们如何处理?

正如我之前提到的,我们可以让这个类也作为它自己的迭代器,这意味着它有一个__next__()方法。在这种情况下,我们只会 return self。但是,这里是超简单Python教程,所以让我们跳过烦人步骤,简化内容,实际创建一个单独的迭代器类。

在这个例子中,我实际上将字典变成了一个元组列表,这将允许我使用索引。(请记住,字典是无序的。)我还将计算出有多少代理分类。当然,所有这些逻辑都属于该__init__()方法:

class AgentRoster_Iterator:

    def __init__(self, container):
        self._roster = list(container._agents.items())
        self._classified = container._classified
        self._max = len(self._roster) - len(self._classified)
        self._index = 0

要成为迭代器,类必须有__next__()方法;这是唯一的要求!请记住,一旦我们没有更多数据要返回,该方法就需要抛出StopException异常。

我将定义AgentRoster_Iterator__next__()方法如下:

class AgentRoster_Iterator:

    # ...snip...

    def __next__(self):
        if self._index == self._max:
            raise StopIteration
        else:
            r = self._roster[self._index]
            self._index += 1
            return r

现在我们返回到AgentRoster类,我们需要在其中添加一个__iter__()返回迭代器对象的方法。

class AgentRoster:

    # ...snip...

    def __iter__(self):
        return AgentRoster_Iterator(self)

只需要一点点操作,现在我们的AgentRoster类的行为与循环的预期完全一样!这段代码如下...

roster = AgentRoster()

roster.add_agent("Ann Tickwitee", 2539634)
roster.add_agent("Ivan Idea", 1324595)
roster.add_agent("Rock Solid", 1385723)
roster.add_agent("Chase Devineaux", 1495263, True)

for number, name in roster:
    print(f'{name}, id #{number}')

产生的结果如下...

Ann Tickwitee, id #2539634
Ivan Idea, id #1324595
Rock Solid, id #1385723

以上是Python循環和迭代器怎麼使用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:亿速云。如有侵權,請聯絡admin@php.cn刪除
您如何切成python列表?您如何切成python列表?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

在Numpy陣列上可以執行哪些常見操作?在Numpy陣列上可以執行哪些常見操作?May 02, 2025 am 12:09 AM

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,減法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Python的數據分析中如何使用陣列?Python的數據分析中如何使用陣列?May 02, 2025 am 12:09 AM

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)

列表的內存足跡與python數組的內存足跡相比如何?列表的內存足跡與python數組的內存足跡相比如何?May 02, 2025 am 12:08 AM

列表sandnumpyArraysInpythonHavedIfferentMemoryfootprints:listSaremoreFlexibleButlessMemory-效率,而alenumpyArraySareSareOptimizedFornumericalData.1)listsStorReereReereReereReereFerenceStoObjects,with withOverHeadeBheadaroundAroundaround64byty64-bitsysysysysysysysysyssyssyssyssysssyssys2)

部署可執行的Python腳本時,如何處理特定環境的配置?部署可執行的Python腳本時,如何處理特定環境的配置?May 02, 2025 am 12:07 AM

toensurepythonscriptsbehavecorrectlyacrycrosdevelvermations,分期和生產,USETHESTERTATE:1)Environment varriablesForsimplesettings,2)configurationfilesfilesForcomPlexSetups,3)dynamiCofforComplexSetups,dynamiqualloadingForaptaptibality.eachmethodoffersuniquebeneiquebeneqeniquebenefitsandrefitsandrequiresandrequiresandrequiresca

您如何切成python陣列?您如何切成python陣列?May 01, 2025 am 12:18 AM

Python列表切片的基本語法是list[start:stop:step]。 1.start是包含的第一個元素索引,2.stop是排除的第一個元素索引,3.step決定元素之間的步長。切片不僅用於提取數據,還可以修改和反轉列表。

在什麼情況下,列表的表現比數組表現更好?在什麼情況下,列表的表現比數組表現更好?May 01, 2025 am 12:06 AM

ListSoutPerformarRaysin:1)DynamicsizicsizingandFrequentInsertions/刪除,2)儲存的二聚體和3)MemoryFeliceFiceForceforseforsparsedata,butmayhaveslightperformancecostsinclentoperations。

如何將Python數組轉換為Python列表?如何將Python數組轉換為Python列表?May 01, 2025 am 12:05 AM

toConvertapythonarraytoalist,usEthelist()constructororageneratorexpression.1)intimpthearraymoduleandcreateanArray.2)USELIST(ARR)或[XFORXINARR] to ConconverTittoalist,請考慮performorefformanceandmemoryfformanceandmemoryfformienceforlargedAtasetset。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。