搜尋
首頁後端開發Python教學Python怎麼呼叫實作最小平方法

Python怎麼呼叫實作最小平方法

May 19, 2023 am 09:09 AM
python

所謂線性最小平方法,可以理解為是解方程式的延續,差異在於,當未知量遠小於方程式數的時候,將會得到一個無解的問題。最小平方法的實質,是保證誤差最小的情況下對未知數進行賦值。

最小平方法是非常經典的演算法,而且這個名字我們在高中的時候就已經接觸了,屬於極為常用的演算法。先前曾經寫過線性最小平方法的原理,並用Python實現:最小二乘法及其Python實現;以及scipy中非線性最小二乘法的調用方式:非線性最小二乘法(文末補充內容);還有稀疏矩陣的最小平方法:稀疏矩陣最小平方法。

下面講對numpy和scipy中實現的線性最小平方法進行說明,並比較二者的速度。

numpy實作

numpy中便實現了最小二乘法,即lstsq(a,b)用於求解類似於a@x=b中的x,其中,a為M× N的矩陣;則當b為M行的向量時,剛好相當於解線性方程組。對於Ax=b這樣的方程組,如果A是滿秩仿真,那麼可以表示為x=A−1b,否則可以表示為x=(ATA)−1ATb。

當b為M×K的矩陣時,則對每一列,都會計算一組x。

其回傳值共有4個,分別是擬合得到的x、擬合誤差、矩陣a的秩、以及矩陣a的單值形式。

import numpy as np
np.random.seed(42)
M = np.random.rand(4,4)
x = np.arange(4)
y = M@x
xhat = np.linalg.lstsq(M,y)
print(xhat[0])
#[0. 1. 2. 3.]

scipy封裝

scipy.linalg同樣提供了最小平方法函數,函數名稱同樣是lstsq,其參數列表為

lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True, lapack_driver=None)

其中a, b即Ax= b,二者皆提供可覆寫開關,設為True可以節省運行時間,此外,函數也支援有限性檢查,這是linalg中許多函數都具備的選項。其傳回值與numpy中的最小平方法函數相同。

cond為浮點型參數,表示奇異值閾值,當奇異值小於cond時將捨棄。

lapack_driver為字串選項,表示選用何種LAPACK中的演算法引擎,可選'gelsd', 'gelsy', 'gelss'。

import scipy.linalg as sl
xhat1 = sl.lstsq(M, y)
print(xhat1[0])
# [0. 1. 2. 3.]

速度對比

最後,對著兩組最小二乘函數做一個速度上的對比

from timeit import timeit
N = 100
A = np.random.rand(N,N)
b = np.arange(N)

timeit(lambda:np.linalg.lstsq(A, b), number=10)
# 0.015487500000745058
timeit(lambda:sl.lstsq(A, b), number=10)
# 0.011151800004881807

這一次,二者並沒有拉開太大的差距,即使將矩陣維度放大到500,二者也是半斤八兩。

N = 500
A = np.random.rand(N,N)
b = np.arange(N)

timeit(lambda:np.linalg.lstsq(A, b), number=10)
0.389679799991427
timeit(lambda:sl.lstsq(A, b), number=10)
0.35642060000100173

補充

Python呼叫非線性最小平方法

簡介與建構子

在在scipy中,非線性最小二乘法的目的是找到一組函數,使得誤差函數的平方和最小,可以表示為如下公式

Python怎麼呼叫實作最小平方法

其中ρ表示損失函數,可以理解為對fi(x)的一次預處理。

scipy.optimize中封裝了非線性最小二乘法函數least_squares,其定義為

least_squares(fun, x0, jac, bounds, method, ftol, xtol, gtol, x_scale, f_scale, loss, jac_sparsity, max_nfev, verbose, args, kwargs)

其中,func和x0為必選參數,func為待求解函數,x0為函數輸入的初值,這兩者無預設值,為必須輸入的參數。

bound為求解區間,預設(−∞,∞),verbose為1時,會有終止輸出,為2時會print更多的運算過程中的資訊。另外下面幾個參數用來控制誤差,比較簡單。

##f_scale1.0殘差邊際值

loss为损失函数,就是上面公式中的ρ \rhoρ,默认为linear,可选值包括

Python怎麼呼叫實作最小平方法

迭代策略

上面的公式仅给出了算法的目的,但并未暴露其细节。关于如何找到最小值,则需要确定搜索最小值的方法,method为最小值搜索的方案,共有三种选项,默认为trf

  • trf:即Trust Region Reflective,信赖域反射算法

  • dogbox:信赖域狗腿算法

  • lm:Levenberg-Marquardt算法

这三种方法都是信赖域方法的延申,信赖域的优化思想其实就是从单点的迭代变成了区间的迭代,由于本文的目的是介绍scipy中所封装好的非线性最小二乘函数,故而仅对其原理做简略的介绍。

Python怎麼呼叫實作最小平方法

其中r为置信半径,假设在这个邻域内,目标函数可以近似为线性或二次函数,则可通过二次模型得到区间中的极小值点sk。然后以这个极小值点为中心,继续优化信赖域所对应的区间。

Python怎麼呼叫實作最小平方法

雅可比矩阵

在了解了信赖域方法之后,就会明白雅可比矩阵在数值求解时的重要作用,而如何计算雅可比矩阵,则是接下来需要考虑的问题。jac参数为计算雅可比矩阵的方法,主要提供了三种方案,分别是基于两点的2-point;基于三点的3-point;以及基于复数步长的cs。一般来说,三点的精度高于两点,但速度也慢一倍。

此外,可以输入自定义函数来计算雅可比矩阵。

测试

最后,测试一下非线性最小二乘法

import numpy as np
from scipy.optimize import least_squares

def test(xs):
    _sum = 0.0
    for i in range(len(xs)):
        _sum = _sum + (1-np.cos((xs[i]*i)/5)*(i+1))
    return _sum

x0 = np.random.rand(5)
ret = least_squares(test, x0)
msg = f"最小值" + ", ".join([f"{x:.4f}" for x in ret.x])
msg += f"\nf(x)={ret.fun[0]:.4f}"
print(msg)
'''
最小值0.9557, 0.5371, 1.5714, 1.6931, 5.2294
f(x)=0.0000
'''

預設值 #備註
ftol 10-8 函數容忍度
#xtol 10-8 自變數容忍度
gtol 10-8 梯度容忍度
x_scale 1.0 變數的特徵尺度

以上是Python怎麼呼叫實作最小平方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:亿速云。如有侵權,請聯絡admin@php.cn刪除
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境