1、openCV讀取視訊串流、在每個畫面圖片上畫出一個矩形。
2、使用mediapipe取得手指關鍵點座標。
3、根據手指座標位置和矩形的座標位置,判斷手指點是否在矩形上,如果在則矩形跟隨手指移動。
環境準備:
python: 3.8.8
opencv: 4.2.0.32
#mediapipe: 0.8 .10.1
註:
1、opencv版本過高或過低可能出現一些如鏡頭打不開、閃退等問題,python版本影響opencv可選擇的版本。
2、pip install mediapipe 後可能導致openCV無法正常使用,卸了重新下載,習慣了就好。
import cv2 import time import numpy as np # 调用摄像头 0 默认摄像头 cap = cv2.VideoCapture(0) # 初始方块数据 x = 100 y = 100 w = 100 h = 100 # 读取一帧帧照片 while True: # 返回frame图片 rec,frame = cap.read() # 镜像 frame = cv2.flip(frame,1) # 画矩形 cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 255), -1) # 显示画面 cv2.imshow('frame',frame) # 退出条件 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
這是很基礎的一步操作,此時我們運行這段代碼,攝像頭打開,我們會驚訝地看到自己英俊的臉龐,且左上角有個100*100的紫色長方形。
pip install mediapipe
此時可能出現一些問題,例如openCV突然用不了了,沒關係,卸載了重新下。
mediapipe詳細資料:Hands - mediapipe (google.github.io)
簡單來說,它會回到我們21個手指關鍵點的座標,也就是它在視訊畫面的位置比例( 0~1 ),我們乘以對應畫面的寬高,就能得到手指對應的座標了。
本次用到食指和中指指尖,也就是8號和12號。
2.1 設定一些基礎資訊
import cv2 import time import numpy as np import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=True, max_num_hands=2, min_detection_confidence=0.5)
#2.2 在處理每一幀影像時,加入
frame.flags.writeable = False frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 返回结果 results = hands.process(frame) frame.flags.writeable = True frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
當我們在當視訊串流中讀取每一幀圖片時,將其從BGR轉為RGB供給mediapipe生成的hands物件讀取,它會返回這張圖片中手指關鍵點的信息,我們只需要繼續對其作畫,畫在每一格圖片上。
# 如果结果不为空 if results.multi_hand_landmarks: # 遍历双手(根据读取顺序,一只只手遍历、画画) for hand_landmarks in results.multi_hand_landmarks: mp_drawing.draw_landmarks( frame, hand_landmarks, mp_hands.HAND_CONNECTIONS, mp_drawing_styles.get_default_hand_landmarks_style(), mp_drawing_styles.get_default_hand_connections_style())
2.3 至此步驟完整程式碼
import cv2 import time import numpy as np import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=True, max_num_hands=2, min_detection_confidence=0.5) # 调用摄像头 0 默认摄像头 cap = cv2.VideoCapture(0) # 方块初始数组 x = 100 y = 100 w = 100 h = 100 # 读取一帧帧照片 while True: # 返回frame图片 rec,frame = cap.read() # 镜像 frame = cv2.flip(frame,1) frame.flags.writeable = False frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 返回结果 results = hands.process(frame) frame.flags.writeable = True frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) # 如果结果不为空 if results.multi_hand_landmarks: # 遍历双手(根据读取顺序,一只只手遍历、画画) # results.multi_hand_landmarks n双手 # hand_landmarks 每只手上21个点信息 for hand_landmarks in results.multi_hand_landmarks: mp_drawing.draw_landmarks( frame, hand_landmarks, mp_hands.HAND_CONNECTIONS, mp_drawing_styles.get_default_hand_landmarks_style(), mp_drawing_styles.get_default_hand_connections_style()) # 画矩形 cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 255), -1) # 显示画面 cv2.imshow('frame',frame) # 退出条件 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
我們這個實驗要求拖曳方塊,那肯定也有不拖曳的時候,因此不妨根據上一步獲取食指(8)和中指(12)指尖的位置,如果這倆離得近,我們就在他與方塊重合的時候,根據手指的位置改變方塊的坐標。
import cv2 import time import math import numpy as np import mediapipe as mp # mediapipe配置 mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=True, max_num_hands=2, min_detection_confidence=0.5) # 调用摄像头 0 默认摄像头 cap = cv2.VideoCapture(0) # cv2.namedWindow("frame", 0) # cv2.resizeWindow("frame", 960, 640) # 获取画面宽度、高度 width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 方块初始数组 x = 100 y = 100 w = 100 h = 100 L1 = 0 L2 = 0 on_square = False square_color = (0, 255, 0) # 读取一帧帧照片 while True: # 返回frame图片 rec,frame = cap.read() # 镜像 frame = cv2.flip(frame,1) frame.flags.writeable = False frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 返回结果 results = hands.process(frame) frame.flags.writeable = True frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) # 如果结果不为空 if results.multi_hand_landmarks: # 遍历双手(根据读取顺序,一只只手遍历、画画) # results.multi_hand_landmarks n双手 # hand_landmarks 每只手上21个点信息 for hand_landmarks in results.multi_hand_landmarks: mp_drawing.draw_landmarks( frame, hand_landmarks, mp_hands.HAND_CONNECTIONS, mp_drawing_styles.get_default_hand_landmarks_style(), mp_drawing_styles.get_default_hand_connections_style()) # 记录手指每个点的x y 坐标 x_list = [] y_list = [] for landmark in hand_landmarks.landmark: x_list.append(landmark.x) y_list.append(landmark.y) # 获取食指指尖 index_finger_x, index_finger_y = int(x_list[8] * width),int(y_list[8] * height) # 获取中指 middle_finger_x,middle_finger_y = int(x_list[12] * width), int(y_list[12] * height) # 计算两指尖距离 finger_distance = math.hypot((middle_finger_x - index_finger_x), (middle_finger_y - index_finger_y)) # 如果双指合并(两之间距离近) if finger_distance < 60: # X坐标范围 Y坐标范围 if (index_finger_x > x and index_finger_x < (x + w)) and ( index_finger_y > y and index_finger_y < (y + h)): if on_square == False: L1 = index_finger_x - x L2 = index_finger_y - y square_color = (255, 0, 255) on_square = True else: # 双指不合并/分开 on_square = False square_color = (0, 255, 0) # 更新坐标 if on_square: x = index_finger_x - L1 y = index_finger_y - L2 # 图像融合 使方块不遮挡视频图片 overlay = frame.copy() cv2.rectangle(frame, (x, y), (x + w, y + h), square_color, -1) frame = cv2.addWeighted(overlay, 0.5, frame, 1 - 0.5, 0) # 显示画面 cv2.imshow('frame',frame) # 退出条件 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
以上是Python+OpenCV怎麼實現拖曳虛擬方塊效果的詳細內容。更多資訊請關注PHP中文網其他相關文章!