首先,需要對用到的模組與存放柵格影像的各類路徑加以準備。
import os import copy import numpy as np import pylab as plt from osgeo import gdal # rt_file_path="G:/Postgraduate/LAI_Glass_RTlab/Rc_Lai_A2018161_h22v03.tif" # gl_file_path="G:/Postgraduate/LAI_Glass_RTlab/GLASS01E01.V50.A2018161.h22v03.2020323.hdf" # out_file_path="G:/Postgraduate/LAI_Glass_RTlab/test.tif" rt_file_path="I:/LAI_RTLab/A2018161/" gl_file_path="I:/LAI_Glass/2018161/" out_file_path="I:/LAI_Dif/"
其中,rt_file_path
為自有產品的存放路徑,gl_file_path
為GLASS產品的存放路徑,out_file_path
為最終二者柵格做完差值處理後結果的存放路徑。
接下來,需要將全部待處理的柵格圖像用os.listdir()
進行獲取,並用for
循環進行循環批次處理操作的準備。
rt_file_list=os.listdir(rt_file_path) for rt_file in rt_file_list: file_name_split=rt_file.split("_") rt_hv=file_name_split[3][:-4] gl_file_list=os.listdir(gl_file_path) for gl_file in gl_file_list: if rt_hv in gl_file: rt_file_tif_path=rt_file_path+rt_file gl_file_tif_path=gl_file_path+gl_file
其中,由於本文需求是對兩種產品做差,因此首先需要結合二者的hv
分幅編號,將同一分幅編號的兩景遙感影像放在一起;因此,依據自有產品檔案名稱的特徵,選擇.split()
進行字串分割,並隨後截取獲得遙感影像的hv
分幅編號。
前述1.1部分已經配置好了輸出檔案存放的路徑,但是還沒有進行輸出檔案檔案名稱的設定;因此這裡我們需要配置每一個做差後的遙感影像的檔案存放路徑與名稱。其中,我們就直接以遙感影像的hv
編號作為輸出結果檔名。
DRT_out_file_path=out_file_path+"DRT/" if not os.path.exists(DRT_out_file_path): os.makedirs(DRT_out_file_path) DRT_out_file_tif_path=os.path.join(DRT_out_file_path,rt_hv+".tif") eco_out_file_path=out_file_path+"eco/" if not os.path.exists(eco_out_file_path): os.makedirs(eco_out_file_path) eco_out_file_tif_path=os.path.join(eco_out_file_path,rt_hv+".tif") wat_out_file_path=out_file_path+"wat/" if not os.path.exists(wat_out_file_path): os.makedirs(wat_out_file_path) wat_out_file_tif_path=os.path.join(wat_out_file_path,rt_hv+".tif") tim_out_file_path=out_file_path+"tim/" if not os.path.exists(tim_out_file_path): os.makedirs(tim_out_file_path) tim_out_file_tif_path=os.path.join(tim_out_file_path,rt_hv+".tif")
這一部分程式碼分為了四個部分,是因為自有產品的LAI是分別依據四種演算法得到的,在做差時需要每一種演算法分別和GLASS產品進行相減,因此配置了四個輸出路徑資料夾。
接下來,利用gdal
模組對.tif
與.hdf
等兩種柵格圖像加以讀取。
rt_raster=gdal.Open(rt_file_path+rt_file) rt_band_num=rt_raster.RasterCount rt_raster_array=rt_raster.ReadAsArray() rt_lai_array=rt_raster_array[0] rt_qa_array=rt_raster_array[1] rt_lai_band=rt_raster.GetRasterBand(1) # rt_lai_nodata=rt_lai_band.GetNoDataValue() # rt_lai_nodata=32767 # rt_lai_mask=np.ma.masked_equal(rt_lai_array,rt_lai_nodata) rt_lai_array_mask=np.where(rt_lai_array>30000,np.nan,rt_lai_array) rt_lai_array_fin=rt_lai_array_mask*0.001 gl_raster=gdal.Open(gl_file_path+gl_file) gl_band_num=gl_raster.RasterCount gl_raster_array=gl_raster.ReadAsArray() gl_lai_array=gl_raster_array gl_lai_band=gl_raster.GetRasterBand(1) gl_lai_array_mask=np.where(gl_lai_array>1000,np.nan,gl_lai_array) gl_lai_array_fin=gl_lai_array_mask*0.01 row=rt_raster.RasterYSize col=rt_raster.RasterXSize geotransform=rt_raster.GetGeoTransform() projection=rt_raster.GetProjection()
首先,以上述程式碼的第一段為例進行解說。其中,gdal.Open()
讀取柵格影像;.RasterCount
取得柵格影像波段數量;.ReadAsArray()
將柵格影像各波段的資訊讀取為Array
格式,當波段數量大於1
時,其共有三維,第一維為波段的數目;rt_raster_array[0]
表示取Array
中的第一個波段,在本文中也就是自有產品的LAI帶;rt_qa_array=rt_raster_array[1]
則表示取出第二波段,在本文中也就是自有產品的QA波段;.GetRasterBand(1)
表示取得柵格影像中的第一個波段(注意,這裡序號不是從0
開始而是從1
開始);np.where(rt_lai_array>30000,np.nan,rt_lai_array)
表示利用np.where ()
函數對Array
中第一個波段中像素>30000
加以選取,並將其設為nan
,其他值不變。這步驟是消除影像中填入值、Nodata
值的方法。最後一句*0.001
是將圖層原有的縮放係數復原。
其次,上述程式碼第三段為取得柵格行、列數與投影變換資訊。
接下來,先將自有產品與GLASS產品加以做差操作,接著需要將四種演算法分別加以提取。
lai_dif=rt_lai_array_fin-gl_lai_array_fin lai_dif=lai_dif*1000 rt_qa_array_bin=copy.copy(rt_qa_array) rt_qa_array_row,rt_qa_array_col=rt_qa_array.shape for i in range(rt_qa_array_row): for j in range(rt_qa_array_col): rt_qa_array_bin[i][j]="{:012b}".format(rt_qa_array_bin[i][j])[-4:] # DRT_pixel_pos=np.where((rt_qa_array_bin>=100) & (rt_qa_array_bin==11)) # eco_pixel_pos=np.where((rt_qa_array_bin<100) & (rt_qa_array_bin==111)) # wat_pixel_pos=np.where((rt_qa_array_bin<1000) & (rt_qa_array_bin==1011)) # tim_pixel_pos=np.where((rt_qa_array_bin<1100) & (rt_qa_array_bin==1111)) # colormap=plt.cm.Greens # plt.figure(1) # # plt.subplot(2,4,1) # plt.imshow(rt_lai_array_fin,cmap=colormap,interpolation='none') # plt.title("RT_LAI") # plt.colorbar() # plt.figure(2) # # plt.subplot(2,4,2) # plt.imshow(gl_lai_array_fin,cmap=colormap,interpolation='none') # plt.title("GLASS_LAI") # plt.colorbar() # plt.figure(3) # dif_colormap=plt.cm.get_cmap("Spectral") # plt.imshow(lai_dif,cmap=dif_colormap,interpolation='none') # plt.title("Difference_LAI (RT-GLASS)") # plt.colorbar() DRT_lai_dif_array=np.where((rt_qa_array_bin>=100) | (rt_qa_array_bin==11), np.nan,lai_dif) eco_lai_dif_array=np.where((rt_qa_array_bin<100) | (rt_qa_array_bin==111), np.nan,lai_dif) wat_lai_dif_array=np.where((rt_qa_array_bin<1000) | (rt_qa_array_bin==1011), np.nan,lai_dif) tim_lai_dif_array=np.where((rt_qa_array_bin<1100) | (rt_qa_array_bin==1111), np.nan,lai_dif) # plt.figure(4) # plt.imshow(DRT_lai_dif_array) # plt.colorbar() # plt.figure(5) # plt.imshow(eco_lai_dif_array) # plt.colorbar() # plt.figure(6) # plt.imshow(wat_lai_dif_array) # plt.colorbar() # plt.figure(7) # plt.imshow(tim_lai_dif_array) # plt.colorbar()
其中,上述程式碼前兩句為差值計算與資料化整。將資料轉換為整數,可以減少結果資料圖層的資料量(因為不需要儲存小數了)。
隨後,開始依據QA波段進行資料篩選與遮罩。其實各類遙感影像(例如MODIS、Landsat等)的QA波段都是比較近似的:透過一串二進位碼來表示遙感影像的質量、資訊等,其中不同的位元組往往都代表著一種特性。例如下圖所示為Landsat Collection 2 Level-2的QA波段意義。
在這裡,QA波段原本是十進位(一般遙感影像為了節省空間,QA波段都是寫成十進位的形式),因此需要將其轉換為二進位;接著透過取得指定需要的二進位資料位數(在本文中也就是能確定自有產品中這一像素來自於哪一種演算法的二進位位數),從而判斷這像素所得LAI是透過哪一種演算法得到的,從而將每種演算法對應的像素分別放在一起處理。 DRT_lai_dif_array
等四個變數分別表示四種演算法中,除了自己這一種演算法得到的像素之外的其他所有像素;之所以選擇這種方式,是因為後期我們可以將其直接掩膜掉,那麼剩下的就是這種演算法本身的像素了。
其中,上述程式碼註解掉的plt
相關內容可以實現繪製空間分佈圖,大家有興趣嘗試使用。
接下来,将我们完成上述差值计算与依据算法进行筛选后的图像保存。
driver=gdal.GetDriverByName("Gtiff") out_DRT_lai=driver.Create(DRT_out_file_tif_path,row,col,1,gdal.GDT_Float32) out_DRT_lai.SetGeoTransform(geotransform) out_DRT_lai.SetProjection(projection) out_DRT_lai.GetRasterBand(1).WriteArray(DRT_lai_dif_array) out_DRT_lai=None driver=gdal.GetDriverByName("Gtiff") out_eco_lai=driver.Create(eco_out_file_tif_path,row,col,1,gdal.GDT_Float32) out_eco_lai.SetGeoTransform(geotransform) out_eco_lai.SetProjection(projection) out_eco_lai.GetRasterBand(1).WriteArray(eco_lai_dif_array) out_eco_lai=None driver=gdal.GetDriverByName("Gtiff") out_wat_lai=driver.Create(wat_out_file_tif_path,row,col,1,gdal.GDT_Float32) out_wat_lai.SetGeoTransform(geotransform) out_wat_lai.SetProjection(projection) out_wat_lai.GetRasterBand(1).WriteArray(wat_lai_dif_array) out_wat_lai=None driver=gdal.GetDriverByName("Gtiff") out_tim_lai=driver.Create(tim_out_file_tif_path,row,col,1,gdal.GDT_Float32) out_tim_lai.SetGeoTransform(geotransform) out_tim_lai.SetProjection(projection) out_tim_lai.GetRasterBand(1).WriteArray(tim_lai_dif_array) out_tim_lai=None print(rt_hv)
其中,.GetDriverByName("Gtiff")
表示保存为.tif
格式的GeoTIFF文件;driver.Create(DRT_out_file_tif_path,row,col,1,gdal.GDT_Float32)
表示按照路径、行列数、波段数与数据格式等建立一个新的栅格图层,作为输出图层的框架;其后表示分别将地理投影转换信息与像素具体数值分别赋予这一新建的栅格图层;最后=None
表示将其从内存空间中释放,完成写入与保存工作。
本文所需完整代码如下:
# -*- coding: utf-8 -*- """ Created on Thu Jul 15 19:36:15 2021 @author: fkxxgis """ import os import copy import numpy as np import pylab as plt from osgeo import gdal # rt_file_path="G:/Postgraduate/LAI_Glass_RTlab/Rc_Lai_A2018161_h22v03.tif" # gl_file_path="G:/Postgraduate/LAI_Glass_RTlab/GLASS01E01.V50.A2018161.h22v03.2020323.hdf" # out_file_path="G:/Postgraduate/LAI_Glass_RTlab/test.tif" rt_file_path="I:/LAI_RTLab/A2018161/" gl_file_path="I:/LAI_Glass/2018161/" out_file_path="I:/LAI_Dif/" rt_file_list=os.listdir(rt_file_path) for rt_file in rt_file_list: file_name_split=rt_file.split("_") rt_hv=file_name_split[3][:-4] gl_file_list=os.listdir(gl_file_path) for gl_file in gl_file_list: if rt_hv in gl_file: rt_file_tif_path=rt_file_path+rt_file gl_file_tif_path=gl_file_path+gl_file DRT_out_file_path=out_file_path+"DRT/" if not os.path.exists(DRT_out_file_path): os.makedirs(DRT_out_file_path) DRT_out_file_tif_path=os.path.join(DRT_out_file_path,rt_hv+".tif") eco_out_file_path=out_file_path+"eco/" if not os.path.exists(eco_out_file_path): os.makedirs(eco_out_file_path) eco_out_file_tif_path=os.path.join(eco_out_file_path,rt_hv+".tif") wat_out_file_path=out_file_path+"wat/" if not os.path.exists(wat_out_file_path): os.makedirs(wat_out_file_path) wat_out_file_tif_path=os.path.join(wat_out_file_path,rt_hv+".tif") tim_out_file_path=out_file_path+"tim/" if not os.path.exists(tim_out_file_path): os.makedirs(tim_out_file_path) tim_out_file_tif_path=os.path.join(tim_out_file_path,rt_hv+".tif") rt_raster=gdal.Open(rt_file_path+rt_file) rt_band_num=rt_raster.RasterCount rt_raster_array=rt_raster.ReadAsArray() rt_lai_array=rt_raster_array[0] rt_qa_array=rt_raster_array[1] rt_lai_band=rt_raster.GetRasterBand(1) # rt_lai_nodata=rt_lai_band.GetNoDataValue() # rt_lai_nodata=32767 # rt_lai_mask=np.ma.masked_equal(rt_lai_array,rt_lai_nodata) rt_lai_array_mask=np.where(rt_lai_array>30000,np.nan,rt_lai_array) rt_lai_array_fin=rt_lai_array_mask*0.001 gl_raster=gdal.Open(gl_file_path+gl_file) gl_band_num=gl_raster.RasterCount gl_raster_array=gl_raster.ReadAsArray() gl_lai_array=gl_raster_array gl_lai_band=gl_raster.GetRasterBand(1) gl_lai_array_mask=np.where(gl_lai_array>1000,np.nan,gl_lai_array) gl_lai_array_fin=gl_lai_array_mask*0.01 row=rt_raster.RasterYSize col=rt_raster.RasterXSize geotransform=rt_raster.GetGeoTransform() projection=rt_raster.GetProjection() lai_dif=rt_lai_array_fin-gl_lai_array_fin lai_dif=lai_dif*1000 rt_qa_array_bin=copy.copy(rt_qa_array) rt_qa_array_row,rt_qa_array_col=rt_qa_array.shape for i in range(rt_qa_array_row): for j in range(rt_qa_array_col): rt_qa_array_bin[i][j]="{:012b}".format(rt_qa_array_bin[i][j])[-4:] # DRT_pixel_pos=np.where((rt_qa_array_bin>=100) & (rt_qa_array_bin==11)) # eco_pixel_pos=np.where((rt_qa_array_bin<100) & (rt_qa_array_bin==111)) # wat_pixel_pos=np.where((rt_qa_array_bin<1000) & (rt_qa_array_bin==1011)) # tim_pixel_pos=np.where((rt_qa_array_bin<1100) & (rt_qa_array_bin==1111)) # colormap=plt.cm.Greens # plt.figure(1) # # plt.subplot(2,4,1) # plt.imshow(rt_lai_array_fin,cmap=colormap,interpolation='none') # plt.title("RT_LAI") # plt.colorbar() # plt.figure(2) # # plt.subplot(2,4,2) # plt.imshow(gl_lai_array_fin,cmap=colormap,interpolation='none') # plt.title("GLASS_LAI") # plt.colorbar() # plt.figure(3) # dif_colormap=plt.cm.get_cmap("Spectral") # plt.imshow(lai_dif,cmap=dif_colormap,interpolation='none') # plt.title("Difference_LAI (RT-GLASS)") # plt.colorbar() DRT_lai_dif_array=np.where((rt_qa_array_bin>=100) | (rt_qa_array_bin==11), np.nan,lai_dif) eco_lai_dif_array=np.where((rt_qa_array_bin<100) | (rt_qa_array_bin==111), np.nan,lai_dif) wat_lai_dif_array=np.where((rt_qa_array_bin<1000) | (rt_qa_array_bin==1011), np.nan,lai_dif) tim_lai_dif_array=np.where((rt_qa_array_bin<1100) | (rt_qa_array_bin==1111), np.nan,lai_dif) # plt.figure(4) # plt.imshow(DRT_lai_dif_array) # plt.colorbar() # plt.figure(5) # plt.imshow(eco_lai_dif_array) # plt.colorbar() # plt.figure(6) # plt.imshow(wat_lai_dif_array) # plt.colorbar() # plt.figure(7) # plt.imshow(tim_lai_dif_array) # plt.colorbar() driver=gdal.GetDriverByName("Gtiff") out_DRT_lai=driver.Create(DRT_out_file_tif_path,row,col,1,gdal.GDT_Float32) out_DRT_lai.SetGeoTransform(geotransform) out_DRT_lai.SetProjection(projection) out_DRT_lai.GetRasterBand(1).WriteArray(DRT_lai_dif_array) out_DRT_lai=None driver=gdal.GetDriverByName("Gtiff") out_eco_lai=driver.Create(eco_out_file_tif_path,row,col,1,gdal.GDT_Float32) out_eco_lai.SetGeoTransform(geotransform) out_eco_lai.SetProjection(projection) out_eco_lai.GetRasterBand(1).WriteArray(eco_lai_dif_array) out_eco_lai=None driver=gdal.GetDriverByName("Gtiff") out_wat_lai=driver.Create(wat_out_file_tif_path,row,col,1,gdal.GDT_Float32) out_wat_lai.SetGeoTransform(geotransform) out_wat_lai.SetProjection(projection) out_wat_lai.GetRasterBand(1).WriteArray(wat_lai_dif_array) out_wat_lai=None driver=gdal.GetDriverByName("Gtiff") out_tim_lai=driver.Create(tim_out_file_tif_path,row,col,1,gdal.GDT_Float32) out_tim_lai.SetGeoTransform(geotransform) out_tim_lai.SetProjection(projection) out_tim_lai.GetRasterBand(1).WriteArray(tim_lai_dif_array) out_tim_lai=None print(rt_hv)
以上是Python如何利用GDAL模組實作讀取柵格資料並對指定資料加以篩選遮罩的詳細內容。更多資訊請關注PHP中文網其他相關文章!