1.建立專案
pom.xml引入相關依賴
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.olive</groupId> <artifactId>prometheus-meter-demo</artifactId> <version>0.0.1-SNAPSHOT</version> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.3.7.RELEASE</version> <relativePath /> </parent> <properties> <java.version>1.8</java.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <spring-boot.version>2.3.7.RELEASE</spring-boot.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-aop</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> <!-- Micrometer Prometheus registry --> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId> </dependency> </dependencies> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-dependencies</artifactId> <version>${spring-boot.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> </project>
2.自訂指標
方式一
直接使用micrometer
核心套件的類別進行指標定義和註冊
package com.olive.monitor; import javax.annotation.PostConstruct; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import io.micrometer.core.instrument.Counter; import io.micrometer.core.instrument.DistributionSummary; import io.micrometer.core.instrument.MeterRegistry; @Component public class NativeMetricsMontior { /** * 支付次数 */ private Counter payCount; /** * 支付金额统计 */ private DistributionSummary payAmountSum; @Autowired private MeterRegistry registry; @PostConstruct private void init() { payCount = registry.counter("pay_request_count", "payCount", "pay-count"); payAmountSum = registry.summary("pay_amount_sum", "payAmountSum", "pay-amount-sum"); } public Counter getPayCount() { return payCount; } public DistributionSummary getPayAmountSum() { return payAmountSum; } }
方式二
透過引入micrometer-registry-prometheus
包,該包結合prometheus,對micrometer進行了封裝
<dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId> </dependency>
同樣定義兩個metrics
package com.olive.monitor; import javax.annotation.PostConstruct; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import io.prometheus.client.CollectorRegistry; import io.prometheus.client.Counter; @Component public class PrometheusMetricsMonitor { /** * 订单发起次数 */ private Counter orderCount; /** * 金额统计 */ private Counter orderAmountSum; @Autowired private CollectorRegistry registry; @PostConstruct private void init() { orderCount = Counter.build().name("order_request_count") .help("order request count.") .labelNames("orderCount") .register(); orderAmountSum = Counter.build().name("order_amount_sum") .help("order amount sum.") .labelNames("orderAmountSum") .register(); registry.register(orderCount); registry.register(orderAmountSum); } public Counter getOrderCount() { return orderCount; } public Counter getOrderAmountSum() { return orderAmountSum; } }
prometheus 4種常用Metrics
Counter
#連續增加不會減少的計數器,可以用來記錄只增不減的類型,例如:網站訪問人數,系統運行時間等。
對於Counter類型的指標,只包含一個inc()的方法,就是用於計數器1.
一般而言,Counter類型的metric指標在冥冥中我們使用_total結束,如http_requests_total.
Gauge
可增可減的儀錶板,曲線圖
對於這類可增可減的指標,用於反應應用的當前狀態。
例如在監控主機時,主機目前空閒的記憶體大小,可用記憶體大小等等。
對於Gauge指標的物件則包含兩個主要的方法inc()和dec(),用於增加和減少計數。
Histogram
主要用來統計資料的分佈情況,這是一種特殊的metrics資料類型,代表的是一種近似的百分比估算數值,統計所有離散的指標資料在各個取值區段內的次數。例如:我們想統計一段時間內http請求回應小於0.005秒、小於0.01秒、小於0.025秒的資料分佈情況。那麼使用Histogram採集每一次http請求的時間,同時設定bucket。
Summary
Summary和Histogram非常相似,都可以統計事件發生的次數或大小,以及其分佈情況,他們都提供了對時間的計數_count以及值的總和_sum ,也都提供了可以計算統計樣本分佈情況的功能,不同之處在於Histogram可以透過histogram_quantile函數在伺服器計算分位數。而Sumamry的分位數則是直接在客戶端定義的。因此對於分位數的計算,Summary在透過PromQL進行查詢的時候有更好的效能表現,而Histogram則會消耗更多的資源,但是相對於客戶端而言Histogram消耗的資源就更少。用哪個都行,依照實際場景自由調整即可。
3. 測試
定義兩個controller分別使用NativeMetricsMontior
和PrometheusMetricsMonitor
package com.olive.controller; import java.util.Random; import javax.annotation.Resource; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; import com.olive.monitor.NativeMetricsMontior; @RestController public class PayController { @Resource private NativeMetricsMontior monitor; @RequestMapping("/pay") public String pay(@RequestParam("amount") Double amount) throws Exception { // 统计支付次数 monitor.getPayCount().increment(); Random random = new Random(); //int amount = random.nextInt(100); if(amount==null) { amount = 0.0; } // 统计支付总金额 monitor.getPayAmountSum().record(amount); return "支付成功, 支付金额: " + amount; } } package com.olive.controller; import java.util.Random; import javax.annotation.Resource; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; import com.olive.monitor.PrometheusMetricsMonitor; @RestController public class OrderController { @Resource private PrometheusMetricsMonitor monitor; @RequestMapping("/order") public String order(@RequestParam("amount") Double amount) throws Exception { // 订单总数 monitor.getOrderCount() .labels("orderCount") .inc(); Random random = new Random(); //int amount = random.nextInt(100); if(amount==null) { amount = 0.0; } // 统计订单总金额 monitor.getOrderAmountSum() .labels("orderAmountSum") .inc(amount); return "下单成功, 订单金额: " + amount; } }
啟動服務
#訪問http://127.0.0.1:9595/actuator/prometheus
;正常看到監測資料
http://127.0.0.1:8080/order?amount=100和
http://127.0.0.1:8080/pay?amount=10後;再造訪
#http:/ /127.0.0.1:9595/actuator/prometheus。查看監控資料
Aspect;這樣的方式就非常友善。能在入口就做了資料埋點監測,無須在controller裡進行程式碼編寫。
package com.olive.aspect; import java.time.LocalDate; import java.util.concurrent.TimeUnit; import javax.servlet.http.HttpServletRequest; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lang.annotation.Around; import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Pointcut; import org.springframework.stereotype.Component; import org.springframework.util.StringUtils; import org.springframework.web.context.request.RequestContextHolder; import org.springframework.web.context.request.ServletRequestAttributes; import io.micrometer.core.instrument.Metrics; @Aspect @Component public class PrometheusMetricsAspect { // 切入所有controller包下的请求方法 @Pointcut("execution(* com.olive.controller..*.*(..))") public void controllerPointcut() { } @Around("controllerPointcut()") public Object MetricsCollector(ProceedingJoinPoint joinPoint) throws Throwable { HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest(); String userId = StringUtils.hasText(request.getParameter("userId")) ? request.getParameter("userId") : "no userId"; // 获取api url String api = request.getServletPath(); // 获取请求方法 String method = request.getMethod(); long startTs = System.currentTimeMillis(); LocalDate now = LocalDate.now(); String[] tags = new String[10]; tags[0] = "api"; tags[1] = api; tags[2] = "method"; tags[3] = method; tags[4] = "day"; tags[5] = now.toString(); tags[6] = "userId"; tags[7] = userId; String amount = StringUtils.hasText(request.getParameter("amount")) ? request.getParameter("amount") : "0.0"; tags[8] = "amount"; tags[9] = amount; // 请求次数加1 //自定义的指标名称:custom_http_request_all,指标包含数据 Metrics.counter("custom_http_request_all", tags).increment(); Object object = null; try { object = joinPoint.proceed(); } catch (Exception e) { //请求失败次数加1 Metrics.counter("custom_http_request_error", tags).increment(); throw e; } finally { long endTs = System.currentTimeMillis() - startTs; //记录请求响应时间 Metrics.timer("custom_http_request_time", tags).record(endTs, TimeUnit.MILLISECONDS); } return object; } }編寫好切面後,重啟服務;存取controller的接口,同樣可以進行自訂監控指標埋點
以上是Spring Boot怎麼自訂監控指標的詳細內容。更多資訊請關注PHP中文網其他相關文章!

新興技術對Java的平台獨立性既有威脅也有增強。 1)雲計算和容器化技術如Docker增強了Java的平台獨立性,但需要優化以適應不同雲環境。 2)WebAssembly通過GraalVM編譯Java代碼,擴展了其平台獨立性,但需與其他語言競爭性能。

不同JVM實現都能提供平台獨立性,但表現略有不同。 1.OracleHotSpot和OpenJDKJVM在平台獨立性上表現相似,但OpenJDK可能需額外配置。 2.IBMJ9JVM在特定操作系統上表現優化。 3.GraalVM支持多語言,需額外配置。 4.AzulZingJVM需特定平台調整。

平台獨立性通過在多種操作系統上運行同一套代碼,降低開發成本和縮短開發時間。具體表現為:1.減少開發時間,只需維護一套代碼;2.降低維護成本,統一測試流程;3.快速迭代和團隊協作,簡化部署過程。

Java'splatformindependencefacilitatescodereusebyallowingbytecodetorunonanyplatformwithaJVM.1)Developerscanwritecodeonceforconsistentbehavioracrossplatforms.2)Maintenanceisreducedascodedoesn'tneedrewriting.3)Librariesandframeworkscanbesharedacrossproj

要解決Java應用程序中的平台特定問題,可以採取以下步驟:1.使用Java的System類查看系統屬性以了解運行環境。 2.利用File類或java.nio.file包處理文件路徑。 3.根據操作系統條件加載本地庫。 4.使用VisualVM或JProfiler優化跨平台性能。 5.通過Docker容器化確保測試環境與生產環境一致。 6.利用GitHubActions在多個平台上進行自動化測試。這些方法有助於有效地解決Java應用程序中的平台特定問題。

類加載器通過統一的類文件格式、動態加載、雙親委派模型和平台無關的字節碼,確保Java程序在不同平台上的一致性和兼容性,實現平台獨立性。

Java編譯器生成的代碼是平台無關的,但最終執行的代碼是平台特定的。 1.Java源代碼編譯成平台無關的字節碼。 2.JVM將字節碼轉換為特定平台的機器碼,確保跨平台運行但性能可能不同。

多線程在現代編程中重要,因為它能提高程序的響應性和資源利用率,並處理複雜的並發任務。 JVM通過線程映射、調度機制和同步鎖機制,在不同操作系統上確保多線程的一致性和高效性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

記事本++7.3.1
好用且免費的程式碼編輯器

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),