當多個執行緒存取某個類別時,不管運行時環境採用何種調度方式或這些進程將如何交替執行,並且在主調碼中不需要任何額外的同步或協調,這個類別都能表現出正確的行為,那麼就稱這個類別時線程安全的。
原子性:提供了互斥訪問,同一時刻只能有一個執行緒對它進行操作
可見性:一個執行緒對主記憶體的修改可以及時的被其他執行緒觀察到
有序性:一個執行緒觀察其他執行緒中的指令執行順序,由於指令重排序的存在,該觀察結果一般雜亂無序
Atomic套件中提供了許多Atomicxxx的類別:
##它們都是CAS(compareAndSwap)來實現原子性。先寫一個簡單範例如下:
@Slf4j public class AtomicExample1 { // 请求总数 public static int clientTotal = 5000; // 同时并发执行的线程数 public static int threadTotal = 200; public static AtomicInteger count = new AtomicInteger(0); public static void main(String[] args) throws Exception { ExecutorService executorService = Executors.newCachedThreadPool(); final Semaphore semaphore = new Semaphore(threadTotal); final CountDownLatch countDownLatch = new CountDownLatch(clientTotal); for (int i = 0; i < clientTotal ; i++) { executorService.execute(() -> { try { semaphore.acquire(); add(); semaphore.release(); } catch (Exception e) { log.error("exception", e); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); log.info("count:{}", count.get()); } private static void add() { count.incrementAndGet(); } }可以發下每次的運行結果總是我們想要的預期結果5000。說明該計數方法是線程安全的。 我們查看下count.incrementAndGet()方法,它的第一個參數為物件本身,第二個參數為valueOffset是用來記錄value本身在記憶體的編譯位址的,這個記錄,也主要是為了在更新操作在記憶體中找到value的位置,方便比較,第三個參數為常數1
public class AtomicInteger extends Number implements java.io.Serializable { private static final long serialVersionUID = 6214790243416807050L; // setup to use Unsafe.compareAndSwapInt for updates private static final Unsafe unsafe = Unsafe.getUnsafe(); private static final long valueOffset; static { try { valueOffset = unsafe.objectFieldOffset (AtomicInteger.class.getDeclaredField("value")); } catch (Exception ex) { throw new Error(ex); } } private volatile int value; ... 此处省略多个方法... /** * Atomically increments by one the current value. * * @return the updated value */ public final int incrementAndGet() { return unsafe.getAndAddInt(this, valueOffset, 1) + 1; } }AtomicInteger源碼裡使用了一個Unsafe的類別,它提供了一個getAndAddInt的方法,我們繼續點看查看它的原始碼:
public final class Unsafe { private static final Unsafe theUnsafe; ....此处省略很多方法及成员变量.... public final int getAndAddInt(Object var1, long var2, int var4) { int var5; do { var5 = this.getIntVolatile(var1, var2); } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4)); return var5; } public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5); public native int getIntVolatile(Object var1, long var2); }可以看到這裡使用了一個do while語句來做主體實作的。而在while語句裡它的核心是呼叫了一個compareAndSwapInt()的方法。它是一個native方法,它是一個底層的方法,不是用Java來實現的。
假設我們要執行0 1=0的操作,以下是單執行緒情況下各參數的值:
更新後:
#compareAndSwapInt()方法的第一個參數(var1)是目前的對象,就是程式碼範例中的count。此時它的值為0(期望值)。第二個值(var2)是傳遞的valueOffset值,它的值為12。第三個參數(var4)就為常數1。方法中的變數參數(var5)是根據參數一和參數二valueOffset,呼叫底層getIntVolatile方法得到的值,此時它的值為0 。 compareAndSwapInt()想要達到的目標是對於count這個對象,如果當前的期望值var1裡的value跟底層的返回的值(var5)相同的話,那麼把它更新成var5 var4這個值。不同的話重新循環取期望值(var5)直到當前值與期望值相同才做更新。 compareAndSwap方法的核心也就是我們通常所說的CAS。 Atomic套件下其他的類別如AtomicLong等的實作原理基本上與上述一樣。 這裡再介紹下LongAdder這個類,透過上述的分析,我們已經知道了AtomicLong使用CAS:在一個死循環內不斷嘗試修改目標值直到修改成功。如果在競爭不激烈的情況下,它修改成功機率很高。反之,如果在競爭激烈的情況下,修改失敗的機率會很高,它就會進行多次的循環嘗試,因此性能會受到一些影響。 對於普通類型的long和double變量,jvm允許將64位元的讀取操作或寫入操作拆成兩個32位元的操作。 LongAdder的核心思想是將熱點資料分離,它可以將AtomicLong內部核心資料value分離成數組,每個執行緒存取時透過hash等演算法映射到其中一個數字進行計數。而最終的計數結果則為這個數組的求和累加,其中熱點數據value,它會被分離成多個單元的cell,每個cell獨自維護內部的值,當前對象的實際值由所有的cell累計合成。這樣,熱點就進行了有效的分離,提高了並行度。 LongAdder相當於在AtomicLong的基礎上將單點的更新壓力分散到各個節點上,在低並發的時候對base的直接更新可以很好的保障跟Atomic的性能基本一致。而在高並發的時候,透過分散提高了性能。但是如果在統計的時候有並發更新,可能會導致統計的數據有誤差。 在實際高並發計數的時候,可以優先使用LongAdder。在低並行度或需要準確數值的時候可以優先使用AtomicLong,這樣反而效率更高。下面簡單的示範下Atomic套件下AtomicReference簡單的用法:
@Slf4j public class AtomicExample4 { private static AtomicReference<Integer> count = new AtomicReference<>(0); public static void main(String[] args) { count.compareAndSet(0, 2); count.compareAndSet(0, 1); log.info("count:{}", count.get()); } }
compareAndSet()分别传入的是预期值跟更新值,只有当预期值跟当前值相等时,才会将值更新为更新值;
上面的第一个方法可以将值更新为2,而第二个步中无法将值更新为1。
下面简单介绍下AtomicIntegerFieldUpdater 用法(利用原子性去更新某个类的实例):
@Slf4j public class AtomicExample5 { private static AtomicIntegerFieldUpdater<AtomicExample5> updater = AtomicIntegerFieldUpdater.newUpdater(AtomicExample5.class, "count"); @Getter private volatile int count = 100; public static void main(String[] args) { AtomicExample5 example5 = new AtomicExample5(); if (updater.compareAndSet(example5, 100, 120)) { log.info("update success 1, {}", example5.getCount()); } if (updater.compareAndSet(example5, 100, 120)) { log.info("update success 2, {}", example5.getCount()); } else { log.info("update failed, {}", example5.getCount()); } } }
它可以更新某个类中指定成员变量的值。
注意:修改的成员变量需要用volatile关键字来修饰,并且不能是static描述的字段。
AtomicStampReference这个类它的核心是要解决CAS的ABA问题(CAS操作的时候,其他线程将变量的值A改成了B,接着又改回了A,等线程使用期望值A与当前变量进行比较的时候,发现A变量没有变,于是CAS就将A值进行了交换操作。
实际上该值已经被其他线程改变过)。
ABA问题的解决思路就是每次变量变更的时候,就将版本号加一。
看一下它的一个核心方法compareAndSet():
public class AtomicStampedReference<V> { private static class Pair<T> { final T reference; final int stamp; private Pair(T reference, int stamp) { this.reference = reference; this.stamp = stamp; } static <T> Pair<T> of(T reference, int stamp) { return new Pair<T>(reference, stamp); } } ... 此处省略多个方法 .... public boolean compareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp) { Pair<V> current = pair; return expectedReference == current.reference && expectedStamp == current.stamp && ((newReference == current.reference && newStamp == current.stamp) || casPair(current, Pair.of(newReference, newStamp))); } }
可以看到它多了一个stamp的比较,stamp的值是由每次更新的时候进行维护的。
再介绍下AtomicLongArray,它维护了一个数组。在该数组下,我们可以选择性的已原子性操作更新某个索引对应的值。
public class AtomicLongArray implements java.io.Serializable { private static final long serialVersionUID = -2308431214976778248L; private static final Unsafe unsafe = Unsafe.getUnsafe(); ...此处省略.... /** * Atomically sets the element at position {@code i} to the given value * and returns the old value. * * @param i the index * @param newValue the new value * @return the previous value */ public final long getAndSet(int i, long newValue) { return unsafe.getAndSetLong(array, checkedByteOffset(i), newValue); } /** * Atomically sets the element at position {@code i} to the given * updated value if the current value {@code ==} the expected value. * * @param i the index * @param expect the expected value * @param update the new value * @return {@code true} if successful. False return indicates that * the actual value was not equal to the expected value. */ public final boolean compareAndSet(int i, long expect, long update) { return compareAndSetRaw(checkedByteOffset(i), expect, update); } }
最后再写一个AtomcBoolean的简单使用:
@Slf4j public class AtomicExample6 { private static AtomicBoolean isHappened = new AtomicBoolean(false); // 请求总数 public static int clientTotal = 5000; // 同时并发执行的线程数 public static int threadTotal = 200; public static void main(String[] args) throws Exception { ExecutorService executorService = Executors.newCachedThreadPool(); final Semaphore semaphore = new Semaphore(threadTotal); final CountDownLatch countDownLatch = new CountDownLatch(clientTotal); for (int i = 0; i < clientTotal ; i++) { executorService.execute(() -> { try { semaphore.acquire(); test(); semaphore.release(); } catch (Exception e) { log.error("exception", e); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); log.info("isHappened:{}", isHappened.get()); } private static void test() { if (isHappened.compareAndSet(false, true)) { log.info("execute"); } } }
以上是怎麼使用Java中的Atomic原子性功能?的詳細內容。更多資訊請關注PHP中文網其他相關文章!