搜尋
首頁後端開發Python教學Python程式的執行過程包括將原始碼轉換為字節碼(即編譯)以及執行字節碼

問題:

我們每天都要寫一些Python程序,或用來處理一些文本,或是做一些系統管理工作。程式寫好後,只需敲下python指令,便可將程式啟動起來並開始執行:

$ python some-program.py

那麼,一個文字形式的.py文件,是如何一步步轉換為能夠被CPU執行的機器指令的呢?此外,程式執行過程中可能會有.pyc檔生成,這些檔又有什麼作用呢?

1. 執行過程

雖然從行為上看Python更像Shell腳本這樣的解釋性語言,但實際上Python程式執行原理本質上跟Java或者C#一樣,都可以歸納為虛擬機器字節碼。 Python執行程式分成兩個步驟:先將程式碼編譯成字節碼,然後啟動虛擬機器執行字節碼:

Python程式的執行過程包括將原始碼轉換為字節碼(即編譯)以及執行字節碼

#雖然Python指令也叫做Python解釋器,但跟其他腳本語言解釋器有本質差異。實際上,Python解釋器包含編譯器以及虛擬機器兩部分。當Python解釋器啟動後,主要執行以下兩個步驟:

編譯器將.py檔案中的Python原始碼編譯成字節碼虛擬機器逐行執行編譯器產生的字節碼

因此,.py檔案中的Python語句並沒有直接轉換成機器指令,而是轉換成Python字節碼。

2. 字節碼

Python程式的編譯結果是字節碼,裡面有很多關於Python運行的相關內容。因此,不管是為了更深入理解Python虛擬機器運作機制,還是為了調優Python程式運作效率,字節碼都是關鍵內容。那麼,Python字節碼到底長啥樣呢?我們如何才能獲得一個Python程式的字節碼呢——Python提供了一個內建函數compile用於即時編譯原始碼。我們只需將待編譯原始碼作為參數呼叫compile函數,即可獲得原始碼的編譯結果。

3. 原始碼編譯

下面,我們透過compile函數來編譯一個程式:

原始碼保存在demo.py檔中:

PI = 3.14

def circle_area(r):
    return PI * r ** 2

class Person(object):
    def __init__(self, name):
        self.name = name

    def say(self):
        print('i am', self.name)

編譯之前需要將原始碼從檔案中讀取出來:

>>> text = open('D:\myspace\code\pythonCode\mix\demo.py').read()
>>> print(text)
PI = 3.14

def circle_area(r):
    return PI * r ** 2

class Person(object):
    def __init__(self, name):
        self.name = name

    def say(self):
        print('i am', self.name)

然後呼叫compile函數來編譯原始碼:

>>> result = compile(text,'D:\myspace\code\pythonCode\mix\demo.py', 'exec')

compile函數必填的參數有3個:

#source :待編譯原始碼

filename:原始碼所在檔案名稱

mode:編譯模式,exec表示將原始碼當作一個模組來編譯

三種編譯模式:

exec:用於編譯模組原始碼

single:用於編譯一個單獨的Python語句(互動下)

eval:用於編譯一個eval表達式

4. PyCodeObject

透過compile函數,我們得到了最後的原始碼編譯結果result:

>>> result
<code object <module> at 0x000001DEC2FCF680, file "D:\myspace\code\pythonCode\mix\demo.py", line 1>
>>> result.__class__
<class &#39;code&#39;>

最終我們得到了一個code類型的對象,它對應的底層結構體是PyCodeObject

PyCodeObject原始碼如下:

/* Bytecode object */
struct PyCodeObject {
    PyObject_HEAD
    int co_argcount;            /* #arguments, except *args */
    int co_posonlyargcount;     /* #positional only arguments */
    int co_kwonlyargcount;      /* #keyword only arguments */
    int co_nlocals;             /* #local variables */
    int co_stacksize;           /* #entries needed for evaluation stack */
    int co_flags;               /* CO_..., see below */
    int co_firstlineno;         /* first source line number */
    PyObject *co_code;          /* instruction opcodes */
    PyObject *co_consts;        /* list (constants used) */
    PyObject *co_names;         /* list of strings (names used) */
    PyObject *co_varnames;      /* tuple of strings (local variable names) */
    PyObject *co_freevars;      /* tuple of strings (free variable names) */
    PyObject *co_cellvars;      /* tuple of strings (cell variable names) */
    /* The rest aren&#39;t used in either hash or comparisons, except for co_name,
       used in both. This is done to preserve the name and line number
       for tracebacks and debuggers; otherwise, constant de-duplication
       would collapse identical functions/lambdas defined on different lines.
    */
    Py_ssize_t *co_cell2arg;    /* Maps cell vars which are arguments. */
    PyObject *co_filename;      /* unicode (where it was loaded from) */
    PyObject *co_name;          /* unicode (name, for reference) */
    PyObject *co_linetable;     /* string (encoding addr<->lineno mapping) See
                                   Objects/lnotab_notes.txt for details. */
    void *co_zombieframe;       /* for optimization only (see frameobject.c) */
    PyObject *co_weakreflist;   /* to support weakrefs to code objects */
    /* Scratch space for extra data relating to the code object.
       Type is a void* to keep the format private in codeobject.c to force
       people to go through the proper APIs. */
    void *co_extra;

    /* Per opcodes just-in-time cache
     *
     * To reduce cache size, we use indirect mapping from opcode index to
     * cache object:
     *   cache = co_opcache[co_opcache_map[next_instr - first_instr] - 1]
     */

    // co_opcache_map is indexed by (next_instr - first_instr).
    //  * 0 means there is no cache for this opcode.
    //  * n > 0 means there is cache in co_opcache[n-1].
    unsigned char *co_opcache_map;
    _PyOpcache *co_opcache;
    int co_opcache_flag;  // used to determine when create a cache.
    unsigned char co_opcache_size;  // length of co_opcache.
};

程式碼物件PyCodeObject用於儲存編譯結果,包括字節碼以及程式碼涉及的常數、名字等等。關鍵字段包括:

##標識co_firstlineno程式碼區塊首行號#co_code指令運算子,即字節碼co_consts#常數清單co_names名字清單
字段 用途
co_argcount 參數個數
co_kwonlyargcount #關鍵字參數數量
co_nlocals #局部變數個數
co_stacksize 執行程式碼所需堆疊空間
co_flags
###### ####co_varnames######局部變數名稱列表#############

下面打印看一下这些字段对应的数据:

通过co_code字段获得字节码:

>>> result.co_code
b&#39;d\x00Z\x00d\x01d\x02\x84\x00Z\x01G\x00d\x03d\x04\x84\x00d\x04e\x02\x83\x03Z\x03d\x05S\x00&#39;

通过co_names字段获得代码对象涉及的所有名字:

>>> result.co_names
(&#39;PI&#39;, &#39;circle_area&#39;, &#39;object&#39;, &#39;Person&#39;)

通过co_consts字段获得代码对象涉及的所有常量:

>>> result.co_consts
(3.14, <code object circle_area at 0x0000023D04D3F310, file "D:\myspace\code\pythonCode\mix\demo.py", line 3>, &#39;circle_area&#39;, <code object Person at 0x0000023D04D3F5D0, file "D:\myspace\code\pythonCode\mix\demo.py", line 6>, &#39;Person&#39;, None)

可以看到,常量列表中还有两个代码对象,其中一个是circle_area函数体,另一个是Person类定义体。对应Python中作用域的划分方式,可以自然联想到:每个作用域对应一个代码对象。如果这个假设成立,那么Person代码对象的常量列表中应该还包括两个代码对象:init函数体和say函数体。下面取出Person类代码对象来看一下:

>>> person_code = result.co_consts[3]
>>> person_code
<code object Person at 0x0000023D04D3F5D0, file "D:\myspace\code\pythonCode\mix\demo.py", line 6>
>>> person_code.co_consts
(&#39;Person&#39;, <code object __init__ at 0x0000023D04D3F470, file "D:\myspace\code\pythonCode\mix\demo.py", line 7>, &#39;Person.__init__&#39;, <code object say at 0x0000023D04D3F520, file "D:\myspace\code\pythonCode\mix\demo.py", line 10>, &#39;Person.say&#39;, None)

因此,我们得出结论:Python源码编译后,每个作用域都对应着一个代码对象,子作用域代码对象位于父作用域代码对象的常量列表里,层级一一对应。

Python程式的執行過程包括將原始碼轉換為字節碼(即編譯)以及執行字節碼

至此,我们对Python源码的编译结果——代码对象PyCodeObject有了最基本的认识,后续会在虚拟机、函数机制、类机制中进一步学习。

5. 反编译

字节码是一串不可读的字节序列,跟二进制机器码一样。如果想读懂机器码,可以将其反汇编,那么字节码可以反编译吗?

通过dis模块可以将字节码反编译:

>>> import dis
>>> dis.dis(result.co_code)
 0 LOAD_CONST               0 (0)
 2 STORE_NAME               0 (0)
 4 LOAD_CONST               1 (1)
 6 LOAD_CONST               2 (2)
 8 MAKE_FUNCTION            0
10 STORE_NAME               1 (1)
12 LOAD_BUILD_CLASS
14 LOAD_CONST               3 (3)
16 LOAD_CONST               4 (4)
18 MAKE_FUNCTION            0
20 LOAD_CONST               4 (4)
22 LOAD_NAME                2 (2)
24 CALL_FUNCTION            3
26 STORE_NAME               3 (3)
28 LOAD_CONST               5 (5)
30 RETURN_VALUE

字节码反编译后的结果和汇编语言很类似。其中,第一列是字节码的偏移量,第二列是指令,第三列是操作数。以第一条字节码为例,LOAD_CONST指令将常量加载进栈,常量下标由操作数给出,而下标为0的常量是:

>>> result.co_consts[0]3.14

这样,第一条字节码的意义就明确了:将常量3.14加载到栈。

由于代码对象保存了字节码、常量、名字等上下文信息,因此直接对代码对象进行反编译可以得到更清晰的结果:

>>>dis.dis(result)
  1           0 LOAD_CONST               0 (3.14)
              2 STORE_NAME               0 (PI)

  3           4 LOAD_CONST               1 (<code object circle_area at 0x0000023D04D3F310, file "D:\myspace\code\pythonCode\mix\demo.py", line 3>)
              6 LOAD_CONST               2 (&#39;circle_area&#39;)
              8 MAKE_FUNCTION            0
             10 STORE_NAME               1 (circle_area)

  6          12 LOAD_BUILD_CLASS
             14 LOAD_CONST               3 (<code object Person at 0x0000023D04D3F5D0, file "D:\myspace\code\pythonCode\mix\demo.py", line 6>)
             16 LOAD_CONST               4 (&#39;Person&#39;)
             18 MAKE_FUNCTION            0
             20 LOAD_CONST               4 (&#39;Person&#39;)
             22 LOAD_NAME                2 (object)
             24 CALL_FUNCTION            3
             26 STORE_NAME               3 (Person)
             28 LOAD_CONST               5 (None)
             30 RETURN_VALUE

Disassembly of <code object circle_area at 0x0000023D04D3F310, file "D:\myspace\code\pythonCode\mix\demo.py", line 3>:
  4           0 LOAD_GLOBAL              0 (PI)
              2 LOAD_FAST                0 (r)
              4 LOAD_CONST               1 (2)
              6 BINARY_POWER
              8 BINARY_MULTIPLY
             10 RETURN_VALUE

Disassembly of <code object Person at 0x0000023D04D3F5D0, file "D:\myspace\code\pythonCode\mix\demo.py", line 6>:
  6           0 LOAD_NAME                0 (__name__)
              2 STORE_NAME               1 (__module__)
              4 LOAD_CONST               0 (&#39;Person&#39;)
              6 STORE_NAME               2 (__qualname__)

  7           8 LOAD_CONST               1 (<code object __init__ at 0x0000023D04D3F470, file "D:\myspace\code\pythonCode\mix\demo.py", line 7>)
             10 LOAD_CONST               2 (&#39;Person.__init__&#39;)
             12 MAKE_FUNCTION            0
             14 STORE_NAME               3 (__init__)

 10          16 LOAD_CONST               3 (<code object say at 0x0000023D04D3F520, file "D:\myspace\code\pythonCode\mix\demo.py", line 10>)
             18 LOAD_CONST               4 (&#39;Person.say&#39;)
             20 MAKE_FUNCTION            0
             22 STORE_NAME               4 (say)
             24 LOAD_CONST               5 (None)
             26 RETURN_VALUE

Disassembly of <code object __init__ at 0x0000023D04D3F470, file "D:\myspace\code\pythonCode\mix\demo.py", line 7>:
  8           0 LOAD_FAST                1 (name)
              2 LOAD_FAST                0 (self)
              4 STORE_ATTR               0 (name)
              6 LOAD_CONST               0 (None)
              8 RETURN_VALUE

Disassembly of <code object say at 0x0000023D04D3F520, file "D:\myspace\code\pythonCode\mix\demo.py", line 10>:
 11           0 LOAD_GLOBAL              0 (print)
              2 LOAD_CONST               1 (&#39;i am&#39;)
              4 LOAD_FAST                0 (self)
              6 LOAD_ATTR                1 (name)
              8 CALL_FUNCTION            2
             10 POP_TOP
             12 LOAD_CONST               0 (None)
             14 RETURN_VALUE

操作数指定的常量或名字的实际值在旁边的括号内列出,此外,字节码以语句为单位进行了分组,中间以空行隔开,语句的行号在字节码前面给出。例如PI = 3.14这个语句就被会变成了两条字节码:

  1           0 LOAD_CONST               0 (3.14)
              2 STORE_NAME               0 (PI)

6. pyc

如果将demo作为模块导入,Python将在demo.py文件所在目录下生成.pyc文件:

>>> import demo

Python程式的執行過程包括將原始碼轉換為字節碼(即編譯)以及執行字節碼

pyc文件会保存经过序列化处理的代码对象PyCodeObject。这样一来,Python后续导入demo模块时,直接读取pyc文件并反序列化即可得到代码对象,避免了重复编译导致的开销。只有demo.py有新修改(时间戳比.pyc文件新),Python才会重新编译。

因此,对比Java而言:Python中的.py文件可以类比Java中的.java文件,都是源码文件;而.pyc文件可以类比.class文件,都是编译结果。只不过Java程序需要先用编译器javac命令来编译,再用虚拟机java命令来执行;而Python解释器把这两个过程都完成了。

以上是Python程式的執行過程包括將原始碼轉換為字節碼(即編譯)以及執行字節碼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:亿速云。如有侵權,請聯絡admin@php.cn刪除
Python的科學計算中如何使用陣列?Python的科學計算中如何使用陣列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何處理同一系統上的不同Python版本?您如何處理同一系統上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

與標準Python陣列相比,使用Numpy數組的一些優點是什麼?與標準Python陣列相比,使用Numpy數組的一些優點是什麼?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

陣列的同質性質如何影響性能?陣列的同質性質如何影響性能?Apr 25, 2025 am 12:13 AM

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

編寫可執行python腳本的最佳實踐是什麼?編寫可執行python腳本的最佳實踐是什麼?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。