搜尋
首頁後端開發Python教學如何使用Python讀取Hive資料庫?

如何使用Python讀取Hive資料庫?

May 09, 2023 pm 04:28 PM
pythonhive

實際業務讀取hive資料庫的程式碼

import logging
import pandas as pd
from impala.dbapi import connect
import sqlalchemy
from sqlalchemy.orm import sessionmaker
import os
import time
import os
import datetime
from dateutil.relativedelta import relativedelta
from typing import Dict, List
import logging
import threading
import pandas as pd
import pickle
class HiveHelper(object):
    def __init__(
        self,
        host='10.2.32.22',
        port=21051,
        database='ur_ai_dw',
        auth_mechanism='LDAP',
        user='urbi',
        password='Ur#730xd',
        logger:logging.Logger=None
        ):
        self.host = host
        self.port = port
        self.database = database
        self.auth_mechanism = auth_mechanism
        self.user = user
        self.password = password
        self.logger = logger
        self.impala_conn = None
        self.conn = None
        self.cursor = None
        self.engine = None
        self.session = None
    def create_table_code(self, file_name):
        '''创建表类代码'''
        os.system(f'sqlacodegen {self.connection_str} > {file_name}')
        return self.conn
    def get_conn(self):
        '''创建连接或获取连接'''
        if self.conn is None:
            engine = self.get_engine()
            self.conn = engine.connect()
        return self.conn
    def get_impala_conn(self):
        '''创建连接或获取连接'''
        if self.impala_conn is None:
            self.impala_conn = connect(
                host=self.host,
                port=self.port,
                database=self.database,
                auth_mechanism=self.auth_mechanism,
                user=self.user,
                password=self.password
                )
        return self.impala_conn
    def get_engine(self):
        '''创建连接或获取连接'''
        if self.engine is None:
            self.engine = sqlalchemy.create_engine('impala://', creator=self.get_impala_conn)
        return self.engine
    def get_cursor(self):
        '''创建连接或获取连接'''
        if self.cursor is None:
            self.cursor = self.conn.cursor()
        return self.cursor
    def get_session(self) -> sessionmaker:
        '''创建连接或获取连接'''
        if self.session is None:
            engine = self.get_engine()
            Session = sessionmaker(bind=engine)
            self.session = Session()
        return self.session
    def close_conn(self):
        '''关闭连接'''
        if self.conn is not None:
            self.conn.close()
            self.conn = None
        self.dispose_engine()
        self.close_impala_conn()
    def close_impala_conn(self):
        '''关闭impala连接'''
        if self.impala_conn is not None:
            self.impala_conn.close()
            self.impala_conn = None
    def close_session(self):
        '''关闭连接'''
        if self.session is not None:
            self.session.close()
            self.session = None
        self.dispose_engine()
    def dispose_engine(self):
        '''释放engine'''
        if self.engine is not None:
            # self.engine.dispose(close=False)
            self.engine.dispose()
            self.engine = None
    def close_cursor(self):
        '''关闭cursor'''
        if self.cursor is not None:
            self.cursor.close()
            self.cursor = None
    def get_data(self, sql, auto_close=True) -> pd.DataFrame:
        '''查询数据'''
        conn = self.get_conn()
        data = None
        try:
            # 异常重试3次
            for i in range(3):
                try:
                    data = pd.read_sql(sql, conn)
                    break
                except Exception as ex:
                    if i == 2:
                        raise ex # 往外抛出异常
                    time.sleep(60) # 一分钟后重试
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            if auto_close:
                self.close_conn()
        return data
pass
class VarsHelper():
    def __init__(self, save_dir, auto_save=True):
        self.save_dir = save_dir
        self.auto_save = auto_save
        self.values = {}
        if not os.path.exists(os.path.dirname(self.save_dir)):
            os.makedirs(os.path.dirname(self.save_dir))
        if os.path.exists(self.save_dir):
            with open(self.save_dir, 'rb') as f:
                self.values = pickle.load(f)
                f.close()
    def set_value(self, key, value):
        self.values[key] = value
        if self.auto_save:
            self.save_file()
    def get_value(self, key):
        return self.values[key]
    def has_key(self, key):
        return key in self.values.keys()
    def save_file(self):
        with open(self.save_dir, 'wb') as f:
            pickle.dump(self.values, f)
            f.close()
pass
class GlobalShareArgs():
    args = {
        "debug": False
    }
    def get_args():
        return GlobalShareArgs.args
    def set_args(args):
        GlobalShareArgs.args = args
    def set_args_value(key, value):
        GlobalShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return GlobalShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in GlobalShareArgs.args.keys()
    def update(args):
        GlobalShareArgs.args.update(args)
pass
class ShareArgs():
    args = {
        "labels_dir":"./hjx/shop_group/month_w_amt/data/labels", # 标签目录
        "labels_output_dir":"./hjx/shop_group/month_w_amt/data/labels_output", # 聚类导出标签目录
        "common_datas_dir":"./hjx/data", # 共用数据目录。ur_bi_dw的公共
        "only_predict": False, # 只识别,不训练
        "delete_model": True, # 先删除模型,仅在训练时使用
        "export_excel": False, # 导出excel
        "classes": 12, # 聚类数
        "batch_size": 16,
        "hidden_size": 32,
        "max_nrof_epochs": 100,
        "learning_rate": 0.0005,
        "loss_type": "categorical_crossentropy",
        "avg_model_num": 10,
        "steps_per_epoch": 4.0, # 4.0
        "lr_callback_patience": 4, 
        "lr_callback_cooldown": 1,
        "early_stopping_callback_patience": 6,
        "get_data": True,
    }
    def get_args():
        return ShareArgs.args
    def set_args(args):
        ShareArgs.args = args
    def set_args_value(key, value):
        ShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return ShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in ShareArgs.args.keys()
    def update(args):
        ShareArgs.args.update(args)
pass
class UrBiGetDatasBase():
    # 线程锁列表,同保存路径共用锁
    lock_dict:Dict[str, threading.Lock] = {}
    # 时间列表,用于判断是否超时
    time_dict:Dict[str, datetime.datetime] = {}
    # 用于记录是否需要更新超时时间
    get_data_timeout_dict:Dict[str, bool] = {}
    def __init__(
        self,
        host='10.2.32.22',
        port=21051,
        database='ur_ai_dw',
        auth_mechanism='LDAP',
        user='urbi',
        password='Ur#730xd',
        save_dir=None,
        logger:logging.Logger=None,
        ):
        self.save_dir = save_dir
        self.logger = logger
        self.db_helper = HiveHelper(
            host=host,
            port=port,
            database=database,
            auth_mechanism=auth_mechanism,
            user=user,
            password=password,
            logger=logger
            )
        # 创建子目录
        if self.save_dir is not None and not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        self.vars_helper = None
        if GlobalShareArgs.get_args_value('debug'):
            self.vars_helper = VarsHelper('./hjx/data/vars/UrBiGetDatas') 
    def close(self):
        '''关闭连接'''
        self.db_helper.close_conn()
    def get_last_time(self, key_name) -> bool:
        '''获取是否超时'''
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if self.vars_helper is not None and self.vars_helper.has_key('UrBiGetDatasBase.time_list'):
            UrBiGetDatasBase.time_dict = self.vars_helper.get_value('UrBiGetDatasBase.time_list')
        timeout = 12 # 12小时
        if GlobalShareArgs.get_args_value('debug'):
            timeout = 24 # 24小时
        get_data_timeout = False
        if key_name not in UrBiGetDatasBase.time_dict.keys() or (datetime.datetime.today() - UrBiGetDatasBase.time_dict[key_name]).total_seconds()>(timeout*60*60):
            self.logger.info('超时%d小时,重新查数据:%s', timeout, key_name)
            # UrBiGetDatasBase.time_list[key_name] = datetime.datetime.today()
            get_data_timeout = True
        else:
            self.logger.info('未超时%d小时,跳过查数据:%s', timeout, key_name)
        # if self.vars_helper is not None :
        #     self.vars_helper.set_value('UrBiGetDatasBase.time_list', UrBiGetDatasBase.time_list)
        UrBiGetDatasBase.get_data_timeout_dict[key_name] = get_data_timeout
        return get_data_timeout
    def save_last_time(self, key_name):
        '''更新状态超时'''
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if UrBiGetDatasBase.get_data_timeout_dict[key_name]:
            UrBiGetDatasBase.time_dict[key_name] = datetime.datetime.today()
        if self.vars_helper is not None :
            UrBiGetDatasBase.time_dict[key_name] = datetime.datetime.today()
            self.vars_helper.set_value('UrBiGetDatasBase.time_list', UrBiGetDatasBase.time_dict)
    def get_lock(self, key_name) -> threading.Lock:
        '''获取锁'''
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if key_name not in UrBiGetDatasBase.lock_dict.keys():
            UrBiGetDatasBase.lock_dict[key_name] = threading.Lock()
        return UrBiGetDatasBase.lock_dict[key_name]
    def get_data_of_date(
        self,
        save_dir,
        sql,
        sort_columns:List[str],
        del_index_list=[-1], # 删除最后下标
        start_date = datetime.datetime(2017, 1, 1), # 开始时间
        offset = relativedelta(months=3), # 时间间隔
        date_format_fun = lambda d: '%04d%02d01' % (d.year, d.month), # 查询语句中替代时间参数的格式化
        filename_format_fun = lambda d: '%04d%02d.csv' % (d.year, d.month), # 查询语句中替代时间参数的格式化
        stop_date = '20700101', # 超过时间则停止
        data_format_fun = None, # 格式化数据
        ):
        '''分时间增量读取数据'''
        # 创建文件夹
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        else:
            #删除最后一个文件
            file_list = os.listdir(save_dir)
            if len(file_list)>0:
                file_list.sort()
                for del_index in del_index_list:
                    os.remove(os.path.join(save_dir,file_list[del_index]))
                    print('删除最后一个文件:', file_list[del_index])
        select_index = -1
        # start_date = datetime.datetime(2017, 1, 1)
        while True:
            end_date = start_date + offset
            start_date_str = date_format_fun(start_date)
            end_date_str = date_format_fun(end_date)
            self.logger.info('date: %s-%s', start_date_str, end_date_str)
            file_path = os.path.join(save_dir, filename_format_fun(start_date))
            # self.logger.info('file_path: %s', file_path)
            if not os.path.exists(file_path):
                data:pd.DataFrame = self.db_helper.get_data(sql % (start_date_str, end_date_str))
                if data is None:
                    break
                self.logger.info('data: %d', len(data))
                # self.logger.info('data: %d', data.columns)
                if len(data)>0:
                    select_index+=1
                    if data_format_fun is not None:
                        data = data_format_fun(data)
                    # 排序
                    data = data.sort_values(sort_columns)
                    data.to_csv(file_path)
                elif select_index!=-1:
                    break
                elif stop_date < start_date_str:
                    raise Exception("读取数据异常,时间超出最大值!")
            start_date = end_date
pass
class UrBiGetDatas(UrBiGetDatasBase):
    def __init__(
        self,
        host=&#39;10.2.32.22&#39;,
        port=21051,
        database=&#39;ur_ai_dw&#39;,
        auth_mechanism=&#39;LDAP&#39;,
        user=&#39;urbi&#39;,
        password=&#39;Ur#730xd&#39;,
        save_dir=&#39;./hjx/data/ur_bi_dw_data&#39;,
        logger:logging.Logger=None
        ):
        self.save_dir = save_dir
        self.logger = logger
        super().__init__(
            host=host,
            port=port,
            database=database,
            auth_mechanism=auth_mechanism,
            user=user,
            password=password,
            save_dir=save_dir,
            logger=logger
            )
    def get_dim_date(self):
        &#39;&#39;&#39;日期数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_date.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_date&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_date.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;dim_date.date_key&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_shop(self):
        &#39;&#39;&#39;店铺数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_shop.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_shop&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_shop.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;dim_shop.shop_no&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_vip(self):
        &#39;&#39;&#39;会员数据&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;vip_no&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = &#39;&#39;&#39;SELECT dv.*, dd.date_key, dd.date_name2 
            FROM ur_bi_dw.dim_vip as dv
            INNER JOIN ur_bi_dw.dim_date as dd
            ON dv.card_create_date=dd.date_name2 
            where dd.date_key >= %s
            and dd.date_key < %s&#39;&#39;&#39;
            # data:pd.DataFrame = self.db_helper.get_data(sql)
            sort_columns = [&#39;dv.vip_no&#39;]
            # TODO:
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                start_date=datetime.datetime(2017, 1, 1), # 开始时间
                offset=relativedelta(years=1)
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_weather(self):
        &#39;&#39;&#39;天气数据&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;weather&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = """
            select weather.* from ur_bi_ods.ods_base_weather_data_1200 as weather
            where weather.date_key>=%s and weather.date_key<%s
            """
            sort_columns = [&#39;weather.date_key&#39;,&#39;weather.areaid&#39;]
            def data_format_fun(data):
                columns = list(data.columns)
                columns = {c:&#39;weather.&#39;+c for c in columns}
                data = data.rename(columns=columns)
                return data
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                del_index_list=[-2, -1], # 删除最后下标
                data_format_fun=data_format_fun,
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_weather_city(self):
        &#39;&#39;&#39;天气城市数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.weather_city.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_weather_city as weather_city&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;weather_city.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods(self):
        &#39;&#39;&#39;货品数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_goods.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_goods&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_goods.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods_market_shop_date(self):
        &#39;&#39;&#39;店铺商品生命周期数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_goods_market_shop_date.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            # sql = &#39;SELECT * FROM ur_bi_dw.dim_goods_market_shop_date as goods_shop_date&#39;
            sql = &#39;&#39;&#39;
            select shop_no, sku_no, shop_market_date, lifecycle_end_date, lifecycle_days
            FROM ur_bi_dw.dim_goods_market_shop_date
            where lifecycle_end_date is not null
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;lifecycle_end_date.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;shop_market_date&#39;])
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods_market_date(self):
        &#39;&#39;&#39;全国商品生命周期数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_goods_market_date.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;&#39;&#39;
            select * FROM ur_bi_dw.dim_goods_market_date
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_goods_market_date.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;dim_goods_market_date.sku_no&#39;])
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods_color_dev_sizes(self):
        &#39;&#39;&#39;商品开发码数数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;dim_goods_color_dev_sizes.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            # sql = &#39;SELECT * FROM ur_bi_dw.dim_goods_market_shop_date as goods_shop_date&#39;
            sql = &#39;SELECT * FROM ur_bi_dm.dim_goods_color_dev_sizes&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;dim_goods_color_dev_sizes.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dwd_daily_sales_size(self):
        &#39;&#39;&#39;实际销售金额&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;dwd_daily_sales_size_all&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = """
            select shop_no,sku_no,date_key,`size`,
                sum(tag_price) as `tag_price`,
                sum(sales_qty) as `sales_qty`,
                sum(sales_tag_amt) as `sales_tag_amt`,
                sum(sales_amt) as `sales_amt`,
                count(0) as `sales_count`
            from ur_bi_dw.dwd_daily_sales_size as sales
            where sales.date_key>=%s and sales.date_key<%s
                and sales.currency_code=&#39;CNY&#39;
            group by shop_no,sku_no,date_key,`size`
            """
            sort_columns = [&#39;date_key&#39;,&#39;shop_no&#39;,&#39;sku_no&#39;]
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                start_date=datetime.datetime(2017, 1, 1), # 开始时间
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dwd_daily_delivery_size(self):
        &#39;&#39;&#39;实际配货金额&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;dwd_daily_delivery_size_all&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = """
            select shop_no,sku_no,date_key,`size`,
                sum(delivery.shop_distr_received_qty) as `shop_distr_received_qty`,
                sum(delivery.shop_distr_received_amt) as `shop_distr_received_amt`,
                sum(delivery.online_distr_received_qty) as `online_distr_received_qty`,
                sum(delivery.online_distr_received_amt) as `online_distr_received_amt`,
                sum(delivery.pr_received_qty) as `pr_received_qty`,
                count(0) as `delivery_count`
            from ur_bi_dw.dwd_daily_delivery_size as delivery
            where delivery.date_key>=%s and delivery.date_key<%s
                and delivery.currency_code=&#39;CNY&#39;
            group by shop_no,sku_no,date_key,`size`
            """
            sort_columns = [&#39;date_key&#39;,&#39;shop_no&#39;,&#39;sku_no&#39;]
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                start_date=datetime.datetime(2017, 1, 1), # 开始时间
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_v_last_nation_sales_status(self):
        &#39;&#39;&#39;商品畅滞销数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;v_last_nation_sales_status.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.v_last_nation_sales_status&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;v_last_nation_sales_status.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dwd_daily_finacial_goods(self):
        &#39;&#39;&#39;商品成本价数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;dwd_daily_finacial_goods.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = """
            select t1.sku_no,t1.`size`,t1.cost_tax_incl from ur_bi_dw.dwd_daily_finacial_goods as t1
            inner join (
                select sku_no,`size`,max(date_key) as date_key
                from ur_bi_dw.dwd_daily_finacial_goods
                where currency_code=&#39;CNY&#39; and country_code=&#39;CN&#39;
                group by sku_no,`size`
            ) as t2
            on t2.sku_no=t1.sku_no
                and t2.`size`=t1.`size`
                and t2.date_key=t1.date_key
            where t1.currency_code=&#39;CNY&#39; and t1.country_code=&#39;CN&#39;
            """
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;t1.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_size_group(self):
        &#39;&#39;&#39;尺码映射数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;dim_size_group.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = """select * from ur_bi_dw.dim_size_group"""
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;dim_size_group.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
pass
def get_common_datas(
    host=&#39;10.2.32.22&#39;,
    port=21051,
    database=&#39;ur_ai_dw&#39;,
    auth_mechanism=&#39;LDAP&#39;,
    user=&#39;urbi&#39;,
    password=&#39;Ur#730xd&#39;,
    logger:logging.Logger=None):
    # 共用文件
    common_datas_dir = ShareArgs.get_args_value(&#39;common_datas_dir&#39;)
    common_ur_bi_dir = os.path.join(common_datas_dir, &#39;ur_bi_data&#39;)
    ur_bi_get_datas = UrBiGetDatas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        save_dir=common_ur_bi_dir,
        logger=logger
    )
    try:
        logger.info(&#39;正在查询日期数据...&#39;)
        ur_bi_get_datas.get_dim_date()
        logger.info(&#39;查询日期数据完成!&#39;)
        logger.info(&#39;正在查询店铺数据...&#39;)
        ur_bi_get_datas.get_dim_shop()
        logger.info(&#39;查询店铺数据完成!&#39;)
        logger.info(&#39;正在查询天气数据...&#39;)
        ur_bi_get_datas.get_weather()
        logger.info(&#39;查询天气数据完成!&#39;)
        logger.info(&#39;正在查询天气城市数据...&#39;)
        ur_bi_get_datas.get_weather_city()
        logger.info(&#39;查询天气城市数据完成!&#39;)
        logger.info(&#39;正在查询货品数据...&#39;)
        ur_bi_get_datas.get_dim_goods()
        logger.info(&#39;查询货品数据完成!&#39;)
        logger.info(&#39;正在查询实际销量数据...&#39;)
        ur_bi_get_datas.get_dwd_daily_sales_size()
        logger.info(&#39;查询实际销量数据完成!&#39;)
    except Exception as ex:
        logger.exception(ex)
        raise ex # 往外抛出异常
    finally:
        ur_bi_get_datas.close()
pass
class CustomUrBiGetDatas(UrBiGetDatasBase):
    def __init__(
        self,
        host=&#39;10.2.32.22&#39;,
        port=21051,
        database=&#39;ur_ai_dw&#39;,
        auth_mechanism=&#39;LDAP&#39;,
        user=&#39;urbi&#39;,
        password=&#39;Ur#730xd&#39;,
        save_dir=&#39;./hjx/data/ur_bi_data&#39;,
        logger:logging.Logger=None
        ):
        self.save_dir = save_dir
        self.logger = logger
        super().__init__(
            host=host,
            port=port,
            database=database,
            auth_mechanism=auth_mechanism,
            user=user,
            password=password,
            save_dir=save_dir,
            logger=logger
            )
    def get_sales_goal_amt(self):
        &#39;&#39;&#39;销售目标金额&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;month_of_year_sales_goal_amt.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;&#39;&#39;
            select sales_goal.shop_no,
                if(sales_goal.serial=&#39;Y&#39;,&#39;W&#39;,sales_goal.serial) as `sales_goal.serial`,
                dates.month_of_year,
                sum(sales_goal.sales_goal_amt) as sales_goal_amt
            from ur_bi_dw.dwd_sales_goal_west as sales_goal
            inner join ur_bi_dw.dim_date as dates
                on sales_goal.date_key = dates.date_key
            group by sales_goal.shop_no,
                if(sales_goal.serial=&#39;Y&#39;,&#39;W&#39;,sales_goal.serial),
                dates.month_of_year
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            data = data.rename(columns={
                &#39;shop_no&#39;:&#39;sales_goal.shop_no&#39;,
                &#39;serial&#39;:&#39;sales_goal.serial&#39;,
                &#39;month_of_year&#39;:&#39;dates.month_of_year&#39;,
            })
            # 排序
            data = data.sort_values([&#39;sales_goal.shop_no&#39;,&#39;sales_goal.serial&#39;,&#39;dates.month_of_year&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_shop_serial_area(self):
        &#39;&#39;&#39;店-系列面积&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;shop_serial_area.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;&#39;&#39;
            select shop_serial_area.shop_no,
                if(shop_serial_area.serial=&#39;Y&#39;,&#39;W&#39;,shop_serial_area.serial) as `shop_serial_area.serial`,
                shop_serial_area.month_of_year,
                sum(shop_serial_area.area) as `shop_serial_area.area`
            from ur_bi_dw.dwd_shop_serial_area as shop_serial_area
            where shop_serial_area.area is not null
            group by shop_serial_area.shop_no,if(shop_serial_area.serial=&#39;Y&#39;,&#39;W&#39;,shop_serial_area.serial),shop_serial_area.month_of_year
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            data = data.rename(columns={
                &#39;shop_no&#39;:&#39;shop_serial_area.shop_no&#39;,
                &#39;serial&#39;:&#39;shop_serial_area.serial&#39;,
                &#39;month_of_year&#39;:&#39;shop_serial_area.month_of_year&#39;,
                &#39;area&#39;:&#39;shop_serial_area.area&#39;,
            })
            # 排序
            data = data.sort_values([&#39;shop_serial_area.shop_no&#39;,&#39;shop_serial_area.serial&#39;,&#39;shop_serial_area.month_of_year&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
pass
def get_datas(
    host=&#39;10.2.32.22&#39;,
    port=21051,
    database=&#39;ur_ai_dw&#39;,
    auth_mechanism=&#39;LDAP&#39;,
    user=&#39;urbi&#39;,
    password=&#39;Ur#730xd&#39;,
    save_dir=&#39;./data/sales_forecast/ur_bi_dw_data&#39;,
    logger:logging.Logger=None):
    ur_bi_get_datas = CustomUrBiGetDatas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
    try:
        # 店,系列,品类,年月,销售目标金额
        logger.info(&#39;正在查询年月销售目标金额数据...&#39;)
        ur_bi_get_datas.get_sales_goal_amt()
        logger.info(&#39;查询年月销售目标金额数据完成!&#39;)
    except Exception as ex:
        logger.exception(ex)
        raise ex # 往外抛出异常
    finally:
        ur_bi_get_datas.close()
pass
def getdata_ur_bi_dw(
    host=&#39;10.2.32.22&#39;,
    port=21051,
    database=&#39;ur_ai_dw&#39;,
    auth_mechanism=&#39;LDAP&#39;,
    user=&#39;urbi&#39;,
    password=&#39;Ur#730xd&#39;,
    save_dir=&#39;./data/sales_forecast/ur_bi_dw_data&#39;,
    logger=None
):
    get_common_datas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        logger=logger
    )
    get_datas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
pass
# 代码入口
# getdata_ur_bi_dw(
#     host=ur_bi_dw_host,
#     port=ur_bi_dw_port,
#     database=ur_bi_dw_database,
#     auth_mechanism=ur_bi_dw_auth_mechanism,
#     user=ur_bi_dw_user,
#     password=ur_bi_dw_password,
#     save_dir=ur_bi_dw_save_dir,
#     logger=logger
#     )

程式碼說明和領悟

每個類別的具體作用說明,程式碼需要根據下面的文字說明進行「食用」:

(第一層)HiveHelper完成了連接資料庫、關閉資料庫連線、產生交易、執行、引擎、連線等功能

VarsHelper提供了一個簡單的持久化功能,可以將物件以文件的形式存放在磁碟上。並提供設定值、取得值、判斷值是否存在的方法

GlobalShareArgs提供了一個字典,並且提供了取得字典、設定字典、設定字典鍵值對、設定字典鍵的值、判斷鍵是否在字典、更新字典等方法

ShareArgs跟GlobalShareArgs類似,只是一開始字典的初始化的鍵值對比較多

(第二層)UrBiGetDataBase類,提供了線程鎖字典、時間字典、超時判斷字典,都是類別變數;使用了HiveHelper類,但注意,不是繼承。在具體的sql讀數時,提供了線程固定和時間判斷

(第三層)UrBiGetDatas類,獲取hive資料庫那邊的日期資料、店鋪資料、會員資料、天氣資料、天氣城市資料、商品資料、店舖生命週期資料、全國商品生命週期資料、商品開發碼數資料、實際銷售金額、實際配貨金額、商品暢銷資料、商品成本價資料、尺寸對應資料等。

(第四層)get_common_data函數,使用URBiGetData類別讀取日期、店鋪、天氣、天氣城市、貨品、實際銷售數據,並緩存到資料夾./yongjian/data/ur_bi_data下面

CustomUrBiGetData類,繼承了UrBiGetDatasBase類,讀取銷售目標金額、點系列面積資料。

(這個也是第四層)get_datas函數,透過CustomUrBiGetData類,讀取年月銷售目標金額。

總的函數:(這個是總的呼叫入口函數)get_data_ur_bi_dw函數,呼叫了get_common_data和get_datas函數進行讀取數據,然後將資料保存到某個資料夾目錄下面。

舉一反三,如果你不是hive資料庫,你可以將第一層這個底層換成mysql。主頁有解釋如果進行更換。第二層不需要改變,第三層就是你想要進行讀取的資料表,不同的資料庫你想要讀取的資料表也不同,所以sql需要你在這裡寫,套用裡面的方法即可,基本上就是修改sql就好了。

這種方法的好處在於,資料不會重複讀取,並且讀取的資料都可以有效率的使用。

後續附上修改成mysql的一個例子代碼

import logging
import pandas as pd
from impala.dbapi import connect
import sqlalchemy
from sqlalchemy.orm import sessionmaker
import os
import time
import os
import datetime
from dateutil.relativedelta import relativedelta
from typing import Dict, List
import logging
import threading
import pandas as pd
import pickle
class MySqlHelper(object):
    def __init__(
        self,
        host=&#39;192.168.15.144&#39;,
        port=3306,
        database=&#39;test_ims&#39;,
        user=&#39;spkjz_writer&#39;,
        password=&#39;7cmoP3QDtueVJQj2q4Az&#39;,
        logger:logging.Logger=None
        ):
        self.host = host
        self.port = port
        self.database = database
        self.user = user
        self.password = password
        self.logger = logger
        self.connection_str = &#39;mysql+pymysql://%s:%s@%s:%d/%s&#39; %(
            self.user, self.password, self.host, self.port, self.database
        )
        self.conn = None
        self.cursor = None
        self.engine = None
        self.session = None
    def create_table_code(self, file_name):
        &#39;&#39;&#39;创建表类代码&#39;&#39;&#39;
        os.system(f&#39;sqlacodegen {self.connection_str} > {file_name}&#39;)
        return self.conn
    def get_conn(self):
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.conn is None:
            engine = self.get_engine()
            self.conn = engine.connect()
        return self.conn
    def get_engine(self):
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.engine is None:
            self.engine = sqlalchemy.create_engine(self.connection_str)
        return self.engine
    def get_cursor(self):
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.cursor is None:
            self.cursor = self.conn.cursor()
        return self.cursor
    def get_session(self) -> sessionmaker:
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.session is None:
            engine = self.get_engine()
            Session = sessionmaker(bind=engine)
            self.session = Session()
        return self.session
    def close_conn(self):
        &#39;&#39;&#39;关闭连接&#39;&#39;&#39;
        if self.conn is not None:
            self.conn.close()
            self.conn = None
        self.dispose_engine()
    def close_session(self):
        &#39;&#39;&#39;关闭连接&#39;&#39;&#39;
        if self.session is not None:
            self.session.close()
            self.session = None
        self.dispose_engine()
    def dispose_engine(self):
        &#39;&#39;&#39;释放engine&#39;&#39;&#39;
        if self.engine is not None:
            # self.engine.dispose(close=False)
            self.engine.dispose()
            self.engine = None
    def close_cursor(self):
        &#39;&#39;&#39;关闭cursor&#39;&#39;&#39;
        if self.cursor is not None:
            self.cursor.close()
            self.cursor = None
    def get_data(self, sql, auto_close=True) -> pd.DataFrame:
        &#39;&#39;&#39;查询数据&#39;&#39;&#39;
        conn = self.get_conn()
        data = None
        try:
            # 异常重试3次
            for i in range(3):
                try:
                    data = pd.read_sql(sql, conn)
                    break
                except Exception as ex:
                    if i == 2:
                        raise ex # 往外抛出异常
                    time.sleep(60) # 一分钟后重试
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            if auto_close:
                self.close_conn()
        return data
pass
class VarsHelper():
    def __init__(self, save_dir, auto_save=True):
        self.save_dir = save_dir
        self.auto_save = auto_save
        self.values = {}
        if not os.path.exists(os.path.dirname(self.save_dir)):
            os.makedirs(os.path.dirname(self.save_dir))
        if os.path.exists(self.save_dir):
            with open(self.save_dir, &#39;rb&#39;) as f:
                self.values = pickle.load(f)
                f.close()
    def set_value(self, key, value):
        self.values[key] = value
        if self.auto_save:
            self.save_file()
    def get_value(self, key):
        return self.values[key]
    def has_key(self, key):
        return key in self.values.keys()
    def save_file(self):
        with open(self.save_dir, &#39;wb&#39;) as f:
            pickle.dump(self.values, f)
            f.close()
pass
class GlobalShareArgs():
    args = {
        "debug": False
    }
    def get_args():
        return GlobalShareArgs.args
    def set_args(args):
        GlobalShareArgs.args = args
    def set_args_value(key, value):
        GlobalShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return GlobalShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in GlobalShareArgs.args.keys()
    def update(args):
        GlobalShareArgs.args.update(args)
pass
class ShareArgs():
    args = {
        "labels_dir":"./hjx/shop_group/month_w_amt/data/labels", # 标签目录
        "labels_output_dir":"./hjx/shop_group/month_w_amt/data/labels_output", # 聚类导出标签目录
        "common_datas_dir":"./hjx/data", # 共用数据目录。ur_bi_dw的公共
        "only_predict": False, # 只识别,不训练
        "delete_model": True, # 先删除模型,仅在训练时使用
        "export_excel": False, # 导出excel
        "classes": 12, # 聚类数
        "batch_size": 16,
        "hidden_size": 32,
        "max_nrof_epochs": 100,
        "learning_rate": 0.0005,
        "loss_type": "categorical_crossentropy",
        "avg_model_num": 10,
        "steps_per_epoch": 4.0, # 4.0
        "lr_callback_patience": 4, 
        "lr_callback_cooldown": 1,
        "early_stopping_callback_patience": 6,
        "get_data": True,
    }
    def get_args():
        return ShareArgs.args
    def set_args(args):
        ShareArgs.args = args
    def set_args_value(key, value):
        ShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return ShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in ShareArgs.args.keys()
    def update(args):
        ShareArgs.args.update(args)
pass
class IMSGetDatasBase():
    # 线程锁列表,同保存路径共用锁
    lock_dict:Dict[str, threading.Lock] = {}
    # 时间列表,用于判断是否超时
    time_dict:Dict[str, datetime.datetime] = {}
    # 用于记录是否需要更新超时时间
    get_data_timeout_dict:Dict[str, bool] = {}
    def __init__(
        self,
        host=&#39;192.168.15.144&#39;,
        port=3306,
        database=&#39;test_ims&#39;,
        user=&#39;spkjz_writer&#39;,
        password=&#39;Ur#7cmoP3QDtueVJQj2q4Az&#39;,
        save_dir=None,
        logger:logging.Logger=None,
        ):
        self.save_dir = save_dir
        self.logger = logger
        self.db_helper = MySqlHelper(
            host=host,
            port=port,
            database=database,
            user=user,
            password=password,
            logger=logger
            )
        # 创建子目录
        if self.save_dir is not None and not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        self.vars_helper = None
        if GlobalShareArgs.get_args_value(&#39;debug&#39;):
            self.vars_helper = VarsHelper(&#39;./hjx/data/vars/IMSGetDatas&#39;) # 把超时时间保存到文件,注释该行即可停掉,只用于调试
    def close(self):
        &#39;&#39;&#39;关闭连接&#39;&#39;&#39;
        self.db_helper.close_conn()
    def get_last_time(self, key_name) -> bool:
        &#39;&#39;&#39;获取是否超时&#39;&#39;&#39;
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if self.vars_helper is not None and self.vars_helper.has_key(&#39;IMSGetDatasBase.time_list&#39;):
            IMSGetDatasBase.time_dict = self.vars_helper.get_value(&#39;IMSGetDatasBase.time_list&#39;)
        timeout = 12 # 12小时
        if GlobalShareArgs.get_args_value(&#39;debug&#39;):
            timeout = 24 # 24小时
        get_data_timeout = False
        if key_name not in IMSGetDatasBase.time_dict.keys() or (datetime.datetime.today() - IMSGetDatasBase.time_dict[key_name]).total_seconds()>(4*60*60):
            self.logger.info(&#39;超时%d小时,重新查数据:%s&#39;, timeout, key_name)
            # IMSGetDatasBase.time_list[key_name] = datetime.datetime.today()
            get_data_timeout = True
        else:
            self.logger.info(&#39;未超时%d小时,跳过查数据:%s&#39;, timeout, key_name)
        # if self.vars_helper is not None :
        #     self.vars_helper.set_value(&#39;IMSGetDatasBase.time_list&#39;, IMSGetDatasBase.time_list)
        IMSGetDatasBase.get_data_timeout_dict[key_name] = get_data_timeout
        return get_data_timeout
    def save_last_time(self, key_name):
        &#39;&#39;&#39;更新状态超时&#39;&#39;&#39;
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if IMSGetDatasBase.get_data_timeout_dict[key_name]:
            IMSGetDatasBase.time_dict[key_name] = datetime.datetime.today()
        if self.vars_helper is not None :
            IMSGetDatasBase.time_dict[key_name] = datetime.datetime.today()
            self.vars_helper.set_value(&#39;IMSGetDatasBase.time_list&#39;, IMSGetDatasBase.time_dict)
    def get_lock(self, key_name) -> threading.Lock:
        &#39;&#39;&#39;获取锁&#39;&#39;&#39;
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if key_name not in IMSGetDatasBase.lock_dict.keys():
            IMSGetDatasBase.lock_dict[key_name] = threading.Lock()
        return IMSGetDatasBase.lock_dict[key_name]
    def get_data_of_date(
        self,
        save_dir,
        sql,
        sort_columns:List[str],
        del_index_list=[-1], # 删除最后下标
        start_date = datetime.datetime(2017, 1, 1), # 开始时间
        offset = relativedelta(months=3), # 时间间隔
        date_format_fun = lambda d: &#39;%04d%02d01&#39; % (d.year, d.month), # 查询语句中替代时间参数的格式化
        filename_format_fun = lambda d: &#39;%04d%02d.csv&#39; % (d.year, d.month), # 查询语句中替代时间参数的格式化
        stop_date = &#39;20700101&#39;, # 超过时间则停止
        ):
        &#39;&#39;&#39;分时间增量读取数据&#39;&#39;&#39;
        # 创建文件夹
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        else:
            #删除最后一个文件
            file_list = os.listdir(save_dir)
            if len(file_list)>0:
                file_list.sort()
                for del_index in del_index_list:
                    os.remove(os.path.join(save_dir,file_list[del_index]))
                    print(&#39;删除最后一个文件:&#39;, file_list[del_index])
        select_index = -1
        # start_date = datetime.datetime(2017, 1, 1)
        while True:
            end_date = start_date + offset
            start_date_str = date_format_fun(start_date)
            end_date_str = date_format_fun(end_date)
            self.logger.info(&#39;date: %s-%s&#39;, start_date_str, end_date_str)
            file_path = os.path.join(save_dir, filename_format_fun(start_date))
            # self.logger.info(&#39;file_path: %s&#39;, file_path)
            if not os.path.exists(file_path):
                data:pd.DataFrame = self.db_helper.get_data(sql % (start_date_str, end_date_str))
                if data is None:
                    break
                self.logger.info(&#39;data: %d&#39;, len(data))
                # self.logger.info(&#39;data: %d&#39;, data.columns)
                if len(data)>0:
                    select_index+=1
                    # 排序
                    data = data.sort_values(sort_columns)
                    data.to_csv(file_path)
                elif select_index!=-1:
                    break
                elif stop_date < start_date_str:
                    raise Exception("读取数据异常,时间超出最大值!")
            start_date = end_date
pass
class CustomIMSGetDatas(IMSGetDatasBase):
    def __init__(
        self,
        host=&#39;192.168.13.134&#39;,
        port=4000,
        database=&#39;test_ims&#39;,
        user=&#39;root&#39;,
        password=&#39;rootimmsadmin&#39;,
        save_dir=&#39;./hjx/data/export_ims_data&#39;,
        logger:logging.Logger=None
        ):
        self.save_dir = save_dir
        self.logger = logger
        super().__init__(
            host=host,
            port=port,
            database=database,
            user=user,
            password=password,
            save_dir=save_dir,
            logger=logger
            )
    def get_ims_w_amt_pro(self):
        &#39;&#39;&#39;年月系列占比数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ims_w_amt_pro.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            # if not self.get_last_time(file_path):
            #     return
            sql = &#39;SELECT * FROM ims_w_amt_pro&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            data = data.rename(columns={
                &#39;serial_forecast_proportion&#39;: &#39;forecast_proportion&#39;,
            })
            data.to_csv(file_path)
            # # 更新超时时间
            # self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
pass
def get_datas(
    host=&#39;192.168.13.134&#39;,
    port=4000,
    database=&#39;test_ims&#39;,
    user=&#39;root&#39;,
    password=&#39;rootimmsadmin&#39;,
    save_dir=&#39;./hjx/data/export_ims_data&#39;,
    logger:logging.Logger=None
    ):
    ur_bi_get_datas = CustomIMSGetDatas(
        host=host,
        port=port,
        database=database,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
    try:
        # 年月系列占比数据
        logger.info(&#39;正在查询年月系列占比数据...&#39;)
        ur_bi_get_datas.get_ims_w_amt_pro()
        logger.info(&#39;查询年月系列占比数据完成!&#39;)
    except Exception as ex:
        logger.exception(ex)
        raise ex # 往外抛出异常
    finally:
        ur_bi_get_datas.close()
pass
def getdata_export_ims(
    host=&#39;192.168.13.134&#39;,
    port=4000,
    database=&#39;test_ims&#39;,
    user=&#39;root&#39;,
    password=&#39;rootimmsadmin&#39;,
    save_dir=&#39;./hjx/data/export_ims_data&#39;,
    logger:logging.Logger=None
    ):
    get_datas(
        host=host,
        port=port,
        database=database,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
pass

以上是如何使用Python讀取Hive資料庫?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:亿速云。如有侵權,請聯絡admin@php.cn刪除
2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分詞在景區評論分析中的準確性?如何提高jieba分詞在景區評論分析中的準確性?Apr 02, 2025 am 07:09 AM

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

如何使用正則表達式匹配到第一個閉合標籤就停止?如何使用正則表達式匹配到第一個閉合標籤就停止?Apr 02, 2025 am 07:06 AM

如何使用正則表達式匹配到第一個閉合標籤就停止?在處理HTML或其他標記語言時,常常需要使用正則表達式來�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器