1 Unicode
電腦儲存的基本單位是位元組,由8個位元位元組成。由於英文只由26個字母加若干符號組成,因此英文字元可以直接用位元組來保存。但是其他語言(例如中日韓等),由於字元眾多,不得不使用多個位元組來進行編碼。
隨著電腦科技的傳播,非拉丁文字元編碼技術不斷發展,但仍有兩個比較大的限制:
不支援多語言:一種語言的編碼方案不能用於另一種語言
沒有統一標準:例如中文就有GBK、GB2312、GB18030等多種編碼標準
#由於編碼方式不統一,開發人員就需要在不同編碼之間來回轉換,不可避免地會出現很多錯誤。為了解決這類不統一問題,Unicode標準被提出了。 Unicode會對世界上大部分文字系統進行整理、編碼,讓電腦可以用統一的方式處理文字。 Unicode目前已經收錄了超過14萬個字符,自然支援多語言。 (Unicode的uni就是「統一」的字根)
2 Python中的Unicode
#2.1 Unicode物件的好處
Python在3之後,str物件內部改用Unicode表示,因此在原始碼中成為Unicode物件。使用Unicode表示的好處是:程式核心邏輯統一使用Unicode,只需在輸入、輸出層進行解碼、編碼,可最大程度地避免各種編碼問題。
圖示如下:
2.2 Python對Unicode的最佳化
#問題:由於Unicode收錄字元已經超過14萬個,每個字元至少要4個位元組來保存(這裡應該是因為2個位元組不夠,所以才用4個位元組,一般不會使用3個位元組)。而英文字元用ASCII碼表示只需要1個字節,使用Unicode反而會使頻繁使用的英文字元的開銷變成原來的4倍。
首先我們來看看Python中不同形式的str物件的大小差異:
>>> sys.getsizeof('ab') - sys.getsizeof('a') 1 >>> sys.getsizeof('一二') - sys.getsizeof('一') 2 >>> sys.getsizeof('????????') - sys.getsizeof('????') 4
由此可見,Python內部對Unicode物件進行了最佳化:根據文字內容,選擇底層儲存單元。
Unicode物件底層儲存根據文字字元的Unicode碼位元範圍分成三類:
PyUnicode_1BYTE_KIND:所有字元碼位元在U 0000到U 00FF之間
PyUnicode_2BYTE_KIND:所有字元碼位元在U 0000到U FFFF之間,且至少有一個字元的碼位元大於U 00FF
PyUnicode_1BYTE_KIND:所有字元碼位在U 0000到U 10FFFF之間,且至少有一個字元的碼位大於U FFFF
對應枚舉如下:
enum PyUnicode_Kind { /* String contains only wstr byte characters. This is only possible when the string was created with a legacy API and _PyUnicode_Ready() has not been called yet. */ PyUnicode_WCHAR_KIND = 0, /* Return values of the PyUnicode_KIND() macro: */ PyUnicode_1BYTE_KIND = 1, PyUnicode_2BYTE_KIND = 2, PyUnicode_4BYTE_KIND = 4 };
根據不同的分類,選擇不同的儲存單元:
/* Py_UCS4 and Py_UCS2 are typedefs for the respective unicode representations. */ typedef uint32_t Py_UCS4; typedef uint16_t Py_UCS2; typedef uint8_t Py_UCS1;
對應關係如下:
#文字類型 | ##字元儲存單元字元儲存單元大小(位元組) | |
---|---|---|
Py_UCS1 | 1 | |
1 | #PyUnicode_2BYTE_KIND | 1|
#PyUnicode_2BYTE_KIND | 1 |
- #PyUnicode_2BYTE_KIND
- 1
- #PyUnicode_2BYTE_KIND
1
#PyUnicode
Py_UCS22
PyUnicode_4BYTE_KIND
#Py_UCS4 | #4 | |||
---|---|---|---|---|
#interned:是否為interned機制維護 | kind:類型,用於區分字元底層儲存單元大小 | ##compact:記憶體分配方式,物件與文字緩衝區是否分離 | ||
透過PyUnicode_New函數,根據文字字元數size以及最大字元maxchar初始化Unicode物件。此函數主要是根據maxchar為Unicode物件選擇最緊湊的字元儲存單元以及底層結構體:(原始碼比較長,這裡就不列出了,大家可以自行了解,下面以表格形式展現) | #128 | 256 | 65536 | kind |
PyUnicode_1BYTE_KIND | PyUnicode_1BYTE_KIND | PyUnicode_2BYTE_KIND | PyUnicode_4BYTE_KIND |
3 Unicode对象的底层结构体
3.1 PyASCIIObject
C源码:
typedef struct { PyObject_HEAD Py_ssize_t length; /* Number of code points in the string */ Py_hash_t hash; /* Hash value; -1 if not set */ struct { unsigned int interned:2; unsigned int kind:3; unsigned int compact:1; unsigned int ascii:1; unsigned int ready:1; unsigned int :24; } state; wchar_t *wstr; /* wchar_t representation (null-terminated) */ } PyASCIIObject;
源码分析:
length:文本长度
hash:文本哈希值
state:Unicode对象标志位
wstr:缓存C字符串的一个wchar_t指针,以“\0”结束(这里和我看的另一篇文章讲得不太一样,另一个描述是:ASCII文本紧接着位于PyASCIIObject结构体后面,我个人觉得现在的这种说法比较准确,毕竟源码结构体后面没有别的字段了)
图示如下:
(注意这里state字段后面有一个4字节大小的空洞,这是结构体字段内存对齐造成的现象,主要是为了优化内存访问效率)
ASCII文本由wstr指向,以’abc’和空字符串对象’'为例:
3.2 PyCompactUnicodeObject
如果文本不全是ASCII,Unicode对象底层便由PyCompactUnicodeObject结构体保存。C源码如下:
/* Non-ASCII strings allocated through PyUnicode_New use the PyCompactUnicodeObject structure. state.compact is set, and the data immediately follow the structure. */ typedef struct { PyASCIIObject _base; Py_ssize_t utf8_length; /* Number of bytes in utf8, excluding the * terminating \0. */ char *utf8; /* UTF-8 representation (null-terminated) */ Py_ssize_t wstr_length; /* Number of code points in wstr, possible * surrogates count as two code points. */ } PyCompactUnicodeObject;
PyCompactUnicodeObject在PyASCIIObject的基础上增加了3个字段:
utf8_length:文本UTF8编码长度
utf8:文本UTF8编码形式,缓存以避免重复编码运算
wstr_length:wstr的“长度”(这里所谓的长度没有找到很准确的说法,笔者也不太清楚怎么能打印出来,大家可以自行研究下)
注意到,PyASCIIObject中并没有保存UTF8编码形式,这是因为ASCII本身就是合法的UTF8,这也是ASCII文本底层由PyASCIIObject保存的原因。
结构图示:
3.3 PyUnicodeObject
PyUnicodeObject则是Python中str对象的具体实现。C源码如下:
/* Strings allocated through PyUnicode_FromUnicode(NULL, len) use the PyUnicodeObject structure. The actual string data is initially in the wstr block, and copied into the data block using _PyUnicode_Ready. */ typedef struct { PyCompactUnicodeObject _base; union { void *any; Py_UCS1 *latin1; Py_UCS2 *ucs2; Py_UCS4 *ucs4; } data; /* Canonical, smallest-form Unicode buffer */ } PyUnicodeObject;
3.4 示例
在日常开发时,要结合实际情况注意字符串拼接前后的内存大小差别:
>>> import sys >>> text = 'a' * 1000 >>> sys.getsizeof(text) 1049 >>> text += '????' >>> sys.getsizeof(text) 4080
4 interned机制
如果str对象的interned标志位为1,Python虚拟机将为其开启interned机制,
源码如下:(相关信息在网上可以看到很多说法和解释,这里笔者能力有限,暂时没有找到最确切的答案,之后补充。抱拳~但是我们通过分析源码应该是能看出一些门道的)
/* This dictionary holds all interned unicode strings. Note that references to strings in this dictionary are *not* counted in the string's ob_refcnt. When the interned string reaches a refcnt of 0 the string deallocation function will delete the reference from this dictionary. Another way to look at this is that to say that the actual reference count of a string is: s->ob_refcnt + (s->state ? 2 : 0) */ static PyObject *interned = NULL; void PyUnicode_InternInPlace(PyObject **p) { PyObject *s = *p; PyObject *t; #ifdef Py_DEBUG assert(s != NULL); assert(_PyUnicode_CHECK(s)); #else if (s == NULL || !PyUnicode_Check(s)) return; #endif /* If it's a subclass, we don't really know what putting it in the interned dict might do. */ if (!PyUnicode_CheckExact(s)) return; if (PyUnicode_CHECK_INTERNED(s)) return; if (interned == NULL) { interned = PyDict_New(); if (interned == NULL) { PyErr_Clear(); /* Don't leave an exception */ return; } } Py_ALLOW_RECURSION t = PyDict_SetDefault(interned, s, s); Py_END_ALLOW_RECURSION if (t == NULL) { PyErr_Clear(); return; } if (t != s) { Py_INCREF(t); Py_SETREF(*p, t); return; } /* The two references in interned are not counted by refcnt. The deallocator will take care of this */ Py_REFCNT(s) -= 2; _PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL; }
可以看到,源码前面还是做一些基本的检查。我们可以看一下37行和50行:将s添加到interned字典中时,其实s同时是key和value(这里我不太清楚为什么会这样做),所以s对应的引用计数是+2了的(具体可以看PyDict_SetDefault()的源码),所以在50行时会将计数-2,保证引用计数的正确。
考虑下面的场景:
>>> class User: def __init__(self, name, age): self.name = name self.age = age >>> user = User('Tom', 21) >>> user.__dict__ {'name': 'Tom', 'age': 21}
由于对象的属性由dict保存,这意味着每个User对象都要保存一个str对象‘name’,这会浪费大量的内存。而str是不可变对象,因此Python内部将有潜在重复可能的字符串都做成单例模式,这就是interned机制。Python具体做法就是在内部维护一个全局dict对象,所有开启interned机制的str对象均保存在这里,后续需要使用的时候,先创建,如果判断已经维护了相同的字符串,就会将新创建的这个对象回收掉。
示例:
由不同运算生成’abc’,最后都是同一个对象:
>>> a = 'abc' >>> b = 'ab' + 'c' >>> id(a), id(b), a is b (2752416949872, 2752416949872, True)
以上是Python內建類型str原始碼分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)