首頁 >後端開發 >Python教學 >如何使用Python來產生一個動態長條圖

如何使用Python來產生一個動態長條圖

王林
王林轉載
2023-05-08 20:43:061994瀏覽

目前,官方的API文件只提供了一個長條圖的原始碼實例,可能大佬平台太忙了沒有時間寫文件吧!

from matplotlib import pyplot as plt
import pandas as pd
import pynimate as nim

df = pd.DataFrame(
    {
        "time": ["1960-01-01", "1961-01-01", "1962-01-01"],
        "Afghanistan": [1, 2, 3],
        "Angola": [2, 3, 4],
        "Albania": [1, 2, 5],
        "USA": [5, 3, 4],
        "Argentina": [1, 4, 5],
    }
).set_index("time")

cnv = nim.Canvas()
bar = nim.Barplot(df, "%Y-%m-%d", "2d")
bar.set_time(callback=lambda i, datafier: datafier.data.index[i].strftime("%b, %Y"))
cnv.add_plot(bar)
cnv.animate()
plt.show()

直接使用pip的方式安裝pynimate模組,需要注意的是該模組直接支援的是3.9以上的python版本,各個鏡像站應該都有提供。

pip install pynimate

pip install matplotlib

pip install pandas

安裝完成之後,我們直接啟動目前的.py模組會出現下面的動態長條圖的效果。

如何使用Python來產生一個動態長條圖

比較相比其他的python視覺化模組,pynimate比較優秀的是它可以將動態圖形的執行過程直接儲存為Gif格式的動態圖片。

cnv.save("file", 24, "gif")

另外,這個pynimate模組作者也提供了可以透過自訂的方式去設定視覺化動態圖形的方式供我們可以參考。

from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import os

dir_path = os.path.dirname(os.path.realpath(__file__))
import pynimate as nim


def post_update(ax, i, datafier, bar_attr):
    ax.spines["top"].set_visible(False)
    ax.spines["right"].set_visible(False)
    ax.spines["bottom"].set_visible(False)
    ax.spines["left"].set_visible(False)
    ax.set_facecolor("#001219")
    for bar, x, y in zip(
        bar_attr.top_bars,
        bar_attr.bar_length,
        bar_attr.bar_rank,
    ):
        ax.text(
            x - 0.3,
            y,
            datafier.col_var.loc[bar, "continent"],
            ha="right",
            color="k",
            size=12,
        )


df = pd.read_csv(dir_path + "/data/sample.csv").set_index("time")
col = pd.DataFrame(
    {
        "columns": ["Afghanistan", "Angola", "Albania", "USA", "Argentina"],
        "continent": ["Asia", "Africa", "Europe", "N America", "S America"],
    }
).set_index("columns")
bar_cols = {
    "Afghanistan": "#2a9d8f",
    "Angola": "#e9c46a",
    "Albania": "#e76f51",
    "USA": "#a7c957",
    "Argentina": "#e5989b",
}

cnv = nim.Canvas(figsize=(12.8, 7.2), facecolor="#001219")
bar = nim.Barplot(
    df, "%Y-%m-%d", "3d", post_update=post_update, rounded_edges=True, grid=False
)
bar.add_var(col_var=col)
bar.set_bar_color(bar_cols)
bar.set_title("Sample Title", color="w", weight=600)
bar.set_xlabel("xlabel", color="w")
bar.set_time(
    callback=lambda i, datafier: datafier.data.index[i].strftime("%b, %Y"), color="w"
)
bar.set_text(
    "sum",
    callback=lambda i, datafier: f"Total :{np.round(datafier.data.iloc[i].sum(),2)}",
    size=20,
    x=0.72,
    y=0.20,
    color="w",
)
bar.set_bar_annots(color="w", size=13)
bar.set_xticks(colors="w", length=0, labelsize=13)
bar.set_yticks(colors="w", labelsize=13)
bar.set_bar_border_props(
    edge_color="black", pad=0.1, mutation_aspect=1, radius=0.2, mutation_scale=0.6
)
cnv.add_plot(bar)
cnv.animate()
plt.show()

上面透過自訂的方式實現動態長條圖效果更加酷炫,為開發者保留了更多的發揮空間,結果展示如下。

如何使用Python來產生一個動態長條圖

以上是如何使用Python來產生一個動態長條圖的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:yisu.com。如有侵權,請聯絡admin@php.cn刪除