搜尋
首頁後端開發Python教學Python實作蒙特卡羅模擬的方法與步驟

Python實作蒙特卡羅模擬的方法與步驟

什麼是蒙特卡羅模擬

蒙特卡羅模擬是一種基於機率統計的方法,透過隨機模擬來計算某個事件發生的機率。在專案管理中,蒙特卡羅模擬主要用於計算專案工期、成本等關鍵指標的機率分佈,幫助專案經理更好地進行風險管理和決策。

讓我們來看上面這張圖, 這張圖是針對三個專案活動:活動1、活動2、活動3進行的蒙特卡羅模擬。模擬的依據是這三個活動的三點估算結果。然後讓計算機進行了1,000,000次隨機預算, 得出的上面這張圖。

我們拿上邊這張圖的藍色虛線的交叉舉例,這個點指的是什麼呢?我們看Y軸,這裡的90%指的是完工機率90%。這個點對應的橫軸將近19天的樣子。也就是說,透過電腦100萬次的模擬。在19天以下完成專案的機率是90%。

做過專案的同學都知道, 客戶或領導者總是希望我們快些快些再快些。領導說,19天沒有,只有16天。這時候,身為專案經理透過上面的圖,發現,X軸16天對應Y軸的數值大概在30%左右。你就問領導:成功率只有30%喲, 你賭還是不賭~

這不失為一種不錯的「科學算命」的方式。關鍵是簡單,還有機率論給你撐腰。

Python實作

在Python中如何計算專案管理的蒙特卡羅模擬呢?其實很簡單,我們可以使用Python中的numpy和matplotlib函式庫來進行計算和繪圖。下面田老師給完整的程式碼:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
#-----------------------------------------------------------------------------
#                     --- TDOUYA STUDIOS ---
#-----------------------------------------------------------------------------
#
# @Project : di08-tdd-cdg-python-learning
# @File    : monte_carlo.py
# @Author  : tianxin.xp@gmail.com
# @Date    : 2023/3/12 18:22
#
# 用Python实现蒙特卡洛模拟
#
#--------------------------------------------------------------------------"""
from datetime import datetime

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import FuncFormatter, MultipleLocator
from scipy.stats import norm

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False


def to_percent(y, position):
    # 将纵轴用百分数表示
    return '{:.0f}%'.format(100 * y)


class Activity:
    """ 活动类,用于表示一个项目中的活动

   Attributes:
       name (str): 活动名称
       optimistic (float): 乐观时间
       pessimistic (float): 悲观时间
       most_likely (float): 最可能时间
   """

    def __init__(self, name, optimistic, pessimistic, most_likely):
        """
            初始化活动类

            Args:
                name (str): 活动名称
                optimistic (float): 乐观时间
                pessimistic (float): 悲观时间
                most_likely (float): 最可能时间
        """
        self.name = name
        self.optimistic = optimistic
        self.pessimistic = pessimistic
        self.most_likely = most_likely


class PMP:
    """
    PMP类用于进行项目管理中的相关计算:
    方法:
    monte_carlo_simulation : 蒙特卡洛模拟试算,包括计算项目工期、平均值、标准差、绘制积累图和概率密度曲线等功能。
    """

    def __init__(self, activities):
        """
        初始化PMP类,传入活动列表。
        :param activities: 活动列表,包括活动名称、乐观值、最可能值和悲观值。
        """
        self.activities = activities

    def monte_carlo_simulation(self, n):
        """
        进行蒙特卡洛模拟试算,计算项目工期、平均值、标准差、绘制积累图和概率密度曲线等。
        :param n: 模拟次数。
        """
        # 模拟参数和变量
        t = []
        for activity in self.activities:
            t.append(np.random.triangular(activity.optimistic, activity.most_likely, activity.pessimistic, n))

        # 计算项目工期
        project_duration = sum(t)

        # 计算平均值和标准差
        mean_duration = np.mean(project_duration)
        std_duration = np.std(project_duration)

        # 绘制积累图
        fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 10), gridspec_kw={'height_ratios': [3, 1]})

        ax1.hist(project_duration, bins=50, density=True, alpha=0.7, color='blue', cumulative=True)
        ax1.yaxis.set_major_locator(MultipleLocator(0.1))
        ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
        ax1.set_ylabel('完成概率')
        ax1.set_title('PMP蒙特卡洛模拟试算', fontsize=20)

        # 绘制概率密度曲线
        xmin, xmax = ax1.get_xlim()
        x = np.linspace(xmin, xmax, 100)
        p = norm.cdf(x, mean_duration, std_duration)
        ax1.plot(x, p, 'k', linewidth=2, drawstyle='steps-post')

        # 找到完成概率90%的点
        x_90 = norm.ppf(0.9, mean_duration, std_duration)

        # 绘制垂线
        ax1.axvline(x_90, linestyle='--', color='blue')
        ax1.axhline(0.9, linestyle='--', color='blue')

        # 隐藏右边和上方的坐标轴线
        ax1.spines['right'].set_visible(False)
        ax1.spines['top'].set_visible(False)

        # 添加表格
        col_labels = ['活动名称', '乐观值', '最可能值', '悲观值']

        cell_text = [[activity.name, activity.optimistic, activity.most_likely, activity.pessimistic] for activity in
                     self.activities]
        table = ax2.table(cellText=cell_text, colLabels=col_labels, loc='center')

        # 设置表格的字体大小和行高
        table.auto_set_font_size(False)
        table.set_fontsize(14)

        # # 设置表格的行高为1.5倍原来的高度
        for i in range(len(self.activities) + 1):
            table._cells[(i, 0)].set_height(0.2)
            table._cells[(i, 1)].set_height(0.2)
            table._cells[(i, 2)].set_height(0.2)
            table._cells[(i, 3)].set_height(0.2)

        ax2.axis('off')

        # 调整子图之间的间距和边距
        plt.subplots_adjust(hspace=0.3, bottom=0.05)

        # 保存图表
        now = datetime.now().strftime('%Y%m%d%H%M%S')
        plt.savefig('monte_carlo_simulation_{}.png'.format(now))

        # 显示图形
        plt.show()


if __name__ == '__main__':
    # 模拟参数和变量
    n = 1000000  # 模拟次数

    # 活动的工期分布
    activities = [
        Activity('活动1', 5, 10, 7),
        Activity('活动2', 3, 8, 5),
        Activity('活动3', 2, 6, 4)
    ]

    # 进行蒙特卡洛模拟
    pmp = PMP(activities)
    pmp.monte_carlo_simulation(n)

以上是Python實作蒙特卡羅模擬的方法與步驟的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:亿速云。如有侵權,請聯絡admin@php.cn刪除
Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

在Python的上下文中定義'數組”和'列表”。在Python的上下文中定義'數組”和'列表”。Apr 24, 2025 pm 03:41 PM

Inpython,一個“列表” isaversatile,mutableSequencethatCanholdMixedDatateTypes,而“陣列” isamorememory-sepersequeSequeSequeSequeSequeRingequiringElements.1)列表

Python列表是可變還是不變的?那Python陣列呢?Python列表是可變還是不變的?那Python陣列呢?Apr 24, 2025 pm 03:37 PM

pythonlistsandArraysareBothable.1)列表Sareflexibleandsupportereceneousdatabutarelessmory-Memory-Empefficity.2)ArraysareMoremoremoremoreMemoremorememorememorememoremorememogeneSdatabutlesserversEversementime,defteringcorcttypecrecttypececeDepeceDyusagetoagetoavoavoiDerrors。

Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能