簡單的說: 遞歸就是方法自己呼叫自己,每次呼叫時傳入不同的變數.遞迴有助於程式設計者解決複雜的問題,同時可以讓程式碼變得簡潔。
看個實際應用場景,迷宮問題(回溯), 遞歸(Recursion)
#我列舉兩個小案例,來幫助大家理解遞歸,這裡在跟大家回顧一下遞歸呼叫機制
#列印問題
public static void test(int n) { if (n > 2) { test(n - 1); } System.out.println("n=" + n); } public static int factorial(int n) { if (n == 1) { return 1; } else { return factorial(n - 1) * n; } }
遞歸用於解決什麼樣的問題2.程式碼案例一——迷宮問題遞迴需要遵守的重要規則
- #各種數學問題如: 8皇后問題, 漢諾塔, 階乘問題, 迷宮問題, 球和籃子的問題(google程式設計大賽)。
- 各種演算法中也會使用到遞歸,例如快排,歸併排序,二分查找,分治演算法等。
- 將用堆疊解決的問題-->第歸程式碼比較簡潔。
- 執行一個方法時,就建立一個新的受保護的獨立空間(堆疊空間)。
- 方法的局部變數是獨立的,不會互相影響, 例如n變數。
- 如果方法中使用的是引用型別變數(例如陣列),就會分享該參考型別的資料。
- 遞迴必須向退出遞歸的條件逼近,否則就是無限遞歸,出現StackOverflowError,死龜了:)。
- 當一個方法執行完畢,或者遇到return,就會返回,遵守誰調用,就將結果返回給誰,同時當方法執行完畢或返回時,該方法也就執行完畢。
說明: 小球得到的路徑,和程式設計師設定的找路策略有關即:找路的上下左右的順序相關再得到小球路徑時,可以先使用(下右上左),再改成(上右下左),看看路徑是不是有變化。測試回溯現象。3.程式碼案例二——八皇后問題package com.szh.recursion; /** * 走迷宫问题 */ public class MiGong { //使用递归回溯来给小球找路, 说明: //1. map 表示地图 //2. i,j 表示从地图的哪个位置开始出发 (1,1) //3. 如果小球能到 map[6][5] 位置,则说明通路找到. //4. 约定:当 map[i][j] 为 0 表示该点没有走过; 当为 1 表示墙; 2 表示通路可以走; //5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯 public static boolean setWay(int[][] map, int i, int j) { //此时走到了迷宫终点 if (map[6][5] == 2) { return true; } else { if (map[i][j] == 0) { //如果当前这个点还没有走过 //按照策略 下->右->上->左 走 map[i][j] = 2; if (setWay(map, i + 1, j)) { //下 return true; } else if (setWay(map, i, j + 1)) { //右 return true; } else if (setWay(map, i - 1, j)) { //上 return true; } else { //左 return true; } } else { //map[i][j] != 0, 即只能为1、2。 1表示墙(无法走),2表示已经走过了,所以此时直接返回false return false; } } } //修改找路的策略,改成 上->右->下->左 public static boolean setWay2(int[][] map, int i, int j) { if(map[6][5] == 2) { // 通路已经找到ok return true; } else { if(map[i][j] == 0) { //如果当前这个点还没有走过 //按照策略 上->右->下->左 map[i][j] = 2; if(setWay2(map, i - 1, j)) { //上 return true; } else if (setWay2(map, i, j + 1)) { //右 return true; } else if (setWay2(map, i + 1, j)) { //下 return true; } else { //左 return true; } } else { return false; } } } public static void main(String[] args) { //先创建一个二维数组,模拟迷宫 (地图) int[][] map = new int[8][7]; //使用迷宫中的部分格子表示墙体(置1) //第一行和最后一行置为1 for (int i = 0; i < 7; i++) { map[0][i] = 1; map[7][i] = 1; } //第一列和最后一列置为1 for (int i = 0; i < 8; i++) { map[i][0] = 1; map[i][6] = 1; } //多添加两块墙体 map[3][1] = 1; map[3][2] = 1; // map[1][2] = 1; // map[2][2] = 1; //输出地图查看 System.out.println("原始迷宫地图为:"); for (int i = 0; i < 8; i++) { for (int j = 0; j < 7; j++) { System.out.print(map[i][j] + " "); } System.out.println(); } //使用递归回溯走迷宫 setWay(map, 1, 1); // setWay2(map, 1, 1); System.out.println("小球走过,并标识过的地图的情况:"); for (int i = 0; i < 8; i++) { for (int j = 0; j < 7; j++) { System.out.print(map[i][j] + " "); } System.out.println(); } } }
八皇后問題,是一個古老而著名的問題,是回溯演算法的典型案例。這個問題是國際國際象棋棋手馬克斯·貝瑟爾於1848年提出:在8×8格的國際象棋上擺放八個皇后,使其不能互相攻擊,即:任意兩個皇后都不能處於同一行、同一列或同一斜線上,問有多少種擺法。
第一個皇后先放第一行第一列。 第二個皇后放在第二行第一列、然後判斷是否OK, 如果不OK,繼續放在第二列、第三列、依序把所有列都放完,找到一個合適。 繼續第三個皇后,還是第一列、第二列……直到第8個皇后也能放在一個不衝突的位置,算是找到了一個正確解。 當得到一個正確解時,在堆疊回退到上一個堆疊時,就會開始回溯,即將第一個皇后,放到第一列的所有正確解,全部得到。 然後回頭繼續第一個皇后放第二列,後面繼續循環執行 1,2,3,4的步驟。package com.szh.recursion; /** * 八皇后问题 */ public class Queue8 { //定义max表示共有多少个皇后 private int max = 8; //定义数组,保存皇后放置的位置结果,比如 arr = {0, 4, 7, 5, 2, 6, 1, 3} int[] array = new int[max]; //共有多少种解法 private static int count = 0; //共有多少次冲突 private static int judgeCount = 0; //编写一个方法,放置第n个皇后 //特别注意: check 是 每一次递归时,进入到check中都有 for(int i = 0; i < max; i++),因此会有回溯 private void check(int n) { if (n == max) { //n = 8 , 表示这8个皇后已经全部放好了 print(); return; } //依次放入皇后,并判断是否冲突 for (int i = 0; i < max; i++) { //先把当前这个皇后 n , 放到该行的第1列 array[n] = i; //判断当放置第n个皇后到i列时,是否冲突 if (judge(n)) { // 不冲突 //接着放n+1个皇后,即开始递归 check(n + 1); } //如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行第i列向后的那一列 } } //查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的n-1个皇后冲突 private boolean judge(int n) { //每摆放一个皇后,就循环去和之前摆好的皇后位置相比较,看是否冲突 for (int i = 0; i < n; i++) { //1. array[i] == array[n] 表示判断 第n个皇后是否和前面的n-1个皇后在同一列 //2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线 //3. 判断是否在同一行, 没有必要,n 表示第几个皇后,这个值每次都在递增,所以必然不在同一行 if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) { judgeCount++; return false; } } return true; } //打印皇后摆放的具体位置 private void print() { count++; for (int i = 0; i < array.length; i++) { System.out.print(array[i] + " "); } System.out.println(); } public static void main(String[] args) { Queue8 queue8 = new Queue8(); queue8.check(0); System.out.printf("一共有%d解法\n", count); System.out.printf("一共判断冲突的次数%d次", judgeCount); } }
這裡其實對程式碼進行Debug就可以看出回溯的過程,我就不多說了。
以上是怎麼用Java資料結構與演算法實作遞歸與回溯的詳細內容。更多資訊請關注PHP中文網其他相關文章!