搜尋
首頁後端開發Python教學Python:如何創建和視覺化點雲


1、簡介

點雲應用程式無所不在:機器人、自動駕駛汽車、輔助系統、醫療保健等。點雲是一種適合處理現實世界資料的3D表示,特別是在需要場景/物件的幾何形狀時,例如物件的距離、形狀和大小。

點雲是一組點,代表現實世界中的場景或空間中的物件。它是幾何物件和場景的離散表示。換句話說,點雲PCD是n個點的集合,其中每個點Pi用其3D座標表示:

Python:如何創建和視覺化點雲

注意,還可以加入一些其他特徵來描述點雲,如RGB顏色、法線等。例如,可以新增RGB顏色來提供顏色資訊。

2、點雲產生

點雲通常使用3D掃描器(雷射掃描器、飛行時間掃描器和結構光掃描器)或電腦輔助設計(CAD)模型產生。在本教程中,我們將首先建立隨機點雲並將其視覺化。然後,我們將使用Open3D函式庫從3D表面取樣點,從3D模型產生它。最後,我們將看到如何從RGB-D資料建立它們。

讓我們從導入Python庫開始:

import numpy as np
import matplotlib.pyplot as plt
import open3d as o3d

2.1 隨機點雲

最簡單的方法是隨機建立一個點雲。請注意,我們通常不會創建要處理的隨機點,除非為GAN(生成對抗網路)創建噪音。

通常,點雲由(n×3)陣列表示,其中n是點的數量。讓我們用5個隨機點創建一個點雲:

number_points = 5
pcd = np.random.rand(number_points, 3)# uniform distribution over [0, 1)
print(pcd)

我們可以直接列印這些點,但效率不高,特別是在大多數應用中,如果點的數量很大的話。更好的方法是將它們顯示在3D空間中。讓我們用Matplotlib函式庫來視覺化它:

# Create Figure:
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
ax.scatter3D(pcd[:, 0], pcd[:, 1], pcd[:, 2])
# label the axes
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.set_title("Random Point Cloud")
# display:
plt.show()

Python:如何創建和視覺化點雲

#隨機點雲視覺化

2.2 取樣點雲

#直接處理3D模型需要時間。因此,從它們的三維表面採樣點雲是一個潛在的解決方案。讓我們先從Open3D資料集中導入兔子模型:

bunny = o3d.data.BunnyMesh()
mesh = o3d.io.read_triangle_mesh(bunny.path)

或以如下方式導入:

mesh = o3d.io.read_triangle_mesh("data/bunny.ply")

接下來,顯示 3D 模型以查看其外觀。您可以移動滑鼠從不同的視點進行查看。

# Visualize:
mesh.compute_vertex_normals() # compute normals for vertices or faces
o3d.visualization.draw_geometries([mesh])

Python:如何創建和視覺化點雲

兔子3D模型

要對點雲進行取樣,有幾種方法。在此範例中,我們從導入的網格中均勻地採樣1000 個點並將其可視化:

# Sample 1000 points:
pcd = mesh.sample_points_uniformly(number_of_points=1000)


# visualize:
o3d.visualization.draw_geometries([pcd])

Python:如何創建和視覺化點雲

兔子點雲

我們可以將創建的點雲儲存為.ply 格式,如下所示:

# Save into ply file:
o3d.io.write_point_cloud("output/bunny_pcd.ply", pcd)

2.3 來自RGB-D 資料的點雲

RGB-D 資料是使用RGB -D感測器(例如Microsoft Kinect)收集的,該感測器同時提供RGB 影像和深度影像。 RGB-D感測器廣泛應用於室內導航、避障等領域。由於RGB影像提供像素顏色,因此深度影像的每個像素表示其與相機的距離。

Open3D 為 RGB-D 影像處理提供了一組函數。要使用Open3D 函數從RGB-D 資料建立點雲,只需匯入兩個影像,建立一個RGB-D 影像對象,最後計算點雲如下:

# read the color and the depth image:
color_raw = o3d.io.read_image("../data/rgb.jpg")
depth_raw = o3d.io.read_image("../data/depth.png")


# create an rgbd image object:
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
color_raw, depth_raw, convert_rgb_to_intensity=False)
# use the rgbd image to create point cloud:
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image,
o3d.camera.PinholeCameraIntrinsic(
o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))


# visualize:
o3d.visualization.draw_geometries([pcd])

Python:如何創建和視覺化點雲

從RGB-D 影像產生的彩色點雲

3、Open3D和NumPy

#有時您需要在Open3D和NumPy之間切換。例如,假設我們想要將NumPy點雲轉換為Open3D.PointCloud物件進行視覺化,並使用Matplotlib視覺化兔子的3D模型。

3.1 從NumPy到Open3D

在本例中,我們使用NumPy.random.rand()函數建立2000個隨機點,該函數從[0,1]的均勻分佈中創建隨機樣本。然後我們建立一個Open3D.PointCloud對象,並使用Open3D.utility.Vector3dVector()函數將其Open3D.PointCloud.points特徵設定為隨機點。

# Create numpy pointcloud:
number_points = 2000
pcd_np = np.random.rand(number_points, 3)


# Convert to Open3D.PointCLoud:
pcd_o3d = o3d.geometry.PointCloud()# create point cloud object
pcd_o3d.points = o3d.utility.Vector3dVector(pcd_np)# set pcd_np as the point cloud points


# Visualize:
o3d.visualization.draw_geometries([pcd_o3d])

Python:如何創建和視覺化點雲

#隨機點雲的 Open3D 視覺化

3.2 从 Open3D到NumPy

这里,我们首先使用Open3D.io.read_point_cloud()函数从.ply文件中读取点云,该函数返回一个Open3D.PointCloud对象。现在我们只需要使用NumPy.asarray()函数将表示点的Open3D.PointCloud.points特征转换为NumPy数组。最后,我们像上面那样显示获得的数组。

# Read the bunny point cloud file:
pcd_o3d = o3d.io.read_point_cloud("../data/bunny_pcd.ply")


# Convert the open3d object to numpy:
pcd_np = np.asarray(pcd_o3d.points)


# Display using matplotlib:
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
ax.scatter3D(pcd_np[:, 0], pcd_np[:, 2], pcd_np[:, 1])
# label the axes
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.set_title("Bunny Point Cloud")
# display:
plt.show()

Python:如何創建和視覺化點雲

使用 Matplotlib 显示的兔子点云

4、最后

在本教程中,我们学习了如何创建和可视化点云。在接下来的教程中,我们将学习如何处理它们。


以上是Python:如何創建和視覺化點雲的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
學習Python:2小時的每日學習是否足夠?學習Python:2小時的每日學習是否足夠?Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Web開發的Python:關鍵應用程序Web開發的Python:關鍵應用程序Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

python在行動中:現實世界中的例子python在行動中:現實世界中的例子Apr 18, 2025 am 12:18 AM

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python的主要用途:綜合概述Python的主要用途:綜合概述Apr 18, 2025 am 12:18 AM

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的主要目的:靈活性和易用性Python的主要目的:靈活性和易用性Apr 17, 2025 am 12:14 AM

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python:多功能編程的力量Python:多功能編程的力量Apr 17, 2025 am 12:09 AM

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

每天2小時學習Python:實用指南每天2小時學習Python:實用指南Apr 17, 2025 am 12:05 AM

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前By尊渡假赌尊渡假赌尊渡假赌
威爾R.E.P.O.有交叉遊戲嗎?
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境