樹狀圖
樹狀圖是顯示物件、群組或變數之間的層次關係的圖表。樹狀圖由在節點或簇處連接的分支組成,它們代表具有相似特徵的觀察組。分支的高度或節點之間的距離表示群組之間的不同或相似程度。也就是說分支越長或節點之間的距離越大,組就越不相似。分支越短或節點之間的距離越小,組越相似。
樹狀圖對於可視化複雜的資料結構和識別具有相似特徵的資料子組或簇很有用。它們通常用於生物學、遺傳學、生態學、社會科學和其他可以根據相似性或相關性對數據進行分組的領域。
背景知識:
「樹狀圖」一詞來自希臘文「dendron」(樹)和「gramma」(繪圖)。 1901年,英國數學家和統計學家卡爾皮爾森以樹狀圖顯示不同植物種類之間的關係[1]。他稱這個圖為「聚類圖」。這可以被認為是樹狀圖的首次使用。
資料準備
我們將使用幾家公司的真實股價來進行聚類。為了方便獲取,所以使用 Alpha Vantage 提供的免費 API 來收集資料。 Alpha Vantage同時提供免費 API 和進階 API,透過API存取需要金鑰,請參考他的網站。
import pandasaspd import requests companies={'Apple':'AAPL','Amazon':'AMZN','Facebook':'META','Tesla':'TSLA','Alphabet (Google)':'GOOGL','Shell':'SHEL','Suncor Energy':'SU', 'Exxon Mobil Corp':'XOM','Lululemon':'LULU','Walmart':'WMT','Carters':'CRI','Childrens Place':'PLCE','TJX Companies':'TJX', 'Victorias Secret':'VSCO','MACYs':'M','Wayfair':'W','Dollar Tree':'DLTR','CVS Caremark':'CVS','Walgreen':'WBA','Curaleaf':'CURLF'}
科技、零售、石油和天然氣以及其他行業中挑選了 20 家公司。
import time all_data={} forkey,valueincompanies.items(): # Replace YOUR_API_KEY with your Alpha Vantage API key url=f'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol={value}&apikey=<YOUR_API_KEY>&outputsize=full' response=requests.get(url) data=response.json() time.sleep(15) if'Time Series (Daily)'indataanddata['Time Series (Daily)']: df=pd.DataFrame.from_dict(data['Time Series (Daily)'], orient='index') print(f'Received data for {key}') else: print("Time series data is empty or not available.") df.rename(columns= {'1. open':key}, inplace=True) all_data[key]=df[key]
在上面的程式碼在 API 呼叫之間設定了 15 秒的暫停,這樣可以保證不會因為太頻繁而被封鎖。
# find common dates among all data frames common_dates=None fordf_key, dfinall_data.items(): ifcommon_datesisNone: common_dates=set(df.index) else: common_dates=common_dates.intersection(df.index) common_dates=sorted(list(common_dates)) # create new data frame with common dates as index df_combined=pd.DataFrame(index=common_dates) # reindex each data frame with common dates and concatenate horizontally fordf_key, dfinall_data.items(): df_combined=pd.concat([df_combined, df.reindex(common_dates)], axis=1)
將上面的資料整合成我們需要的DF,下面就可以直接使用了
層次聚類
層次聚類(Hierarchical clustering)是一種用於機器學習和資料分析的聚類演算法。它使用嵌套簇的層次結構,根據相似性將相似物件分組到簇中。該演算法可以是聚集性的可以從單一物件開始並將它們合併成簇,也可以是分裂的,從一個大簇開始並遞歸地將其分成較小的簇。
要注意的是並非所有聚類方法都是層次聚類方法,只能在少數聚類演算法上使用樹狀圖。
聚類演算法我們將使用 scipy 模組中提供的層次聚類。
1、自上而下聚類
import numpyasnp import scipy.cluster.hierarchyassch import matplotlib.pyplotasplt # Convert correlation matrix to distance matrix dist_mat=1-df_combined.corr() # Perform top-down clustering clustering=sch.linkage(dist_mat, method='complete') cuts=sch.cut_tree(clustering, n_clusters=[3, 4]) # Plot dendrogram plt.figure(figsize=(10, 5)) sch.dendrogram(clustering, labels=list(df_combined.columns), leaf_rotation=90) plt.title('Dendrogram of Company Correlations (Top-Down Clustering)') plt.xlabel('Companies') plt.ylabel('Distance') plt.show()
#如何根據樹狀圖確定最佳簇數
找到最佳簇數的最簡單方法是查看生成的樹狀圖中使用的顏色數。最佳簇的數量比顏色的數量少一個就可以了。所以根據上面這個樹狀圖,最佳聚類的數量是兩個。
另一種找到最佳簇數的方法是辨識簇間距離突然變化的點。這稱為“拐點”或“肘點”,可用於確定最能捕捉資料變化的聚類數量。上面圖中我們可以看到,不同數量的簇之間的最大距離變化發生在 1 和 2 個簇之間。因此,再一次說明最佳簇數是兩個。
從樹狀圖中取得任意數量的簇
使用樹狀圖的一個優點是可以透過查看樹狀圖將物件聚類到任意數量的簇中。例如,需要找到兩個聚類,可以查看樹狀圖上最頂部的垂直線並決定聚類。例如在這個例子中,如果需要兩個簇,那麼第一個簇中有四家公司,第二個集群中有 16 個公司。如果我們需要三個簇就可以將第二個簇進一步拆分為 11 個和 5 個公司。如果需要的更多可以依序類推。
2、自下而上聚類
import numpyasnp import scipy.cluster.hierarchyassch import matplotlib.pyplotasplt # Convert correlation matrix to distance matrix dist_mat=1-df_combined.corr() # Perform bottom-up clustering clustering=sch.linkage(dist_mat, method='ward') # Plot dendrogram plt.figure(figsize=(10, 5)) sch.dendrogram(clustering, labels=list(df_combined.columns), leaf_rotation=90) plt.title('Dendrogram of Company Correlations (Bottom-Up Clustering)') plt.xlabel('Companies') plt.ylabel('Distance') plt.show()
#我們為自下而上的聚類所得到的樹狀圖類似自上而下的聚類。最佳簇數仍然是兩個(基於顏色數和“拐點”方法)。但是如果我們需要更多的集群,就會觀察到一些細微的差異。這也很正常,因為使用的方法不一樣,導致結果會有一些細微的差異。
以上是Python怎麼用樹狀圖實作視覺化聚類的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

WebStorm Mac版
好用的JavaScript開發工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 Linux新版
SublimeText3 Linux最新版

記事本++7.3.1
好用且免費的程式碼編輯器