搜尋
首頁科技週邊人工智慧聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

前幾天,Meta首席人工智慧科學家Yann LeCun的一段對於ChatGPT的點評迅速傳遍圈內外,引發了大波討論。

在Zoom的媒體和高階主管小型聚會上,LeCun給了一段令人驚訝的評價:「就底層科技而言,ChatGPT並不是多麼了不得的創新。」

「雖然在公眾眼中,它是革命性的,但是我們知道,它就是一個組合得很好的產品,僅此而已。」

ChatGPT不算什麼創新

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

ChatGPT作為這幾個月的聊天機器人「頂流」,早就紅遍全世界,甚至切實改變了一部分人的職業生涯,以及學校教育的現狀。

全世界為它驚嘆的時候,LeCun對ChatGPT的點評居然如此「輕描淡寫」。

但其實,他的言論也不無道理。

像ChatGPT這種數據驅動的人工智慧系統,許多公司和研究型實驗室有。 LeCun表示,OpenAI在這個領域並沒有多麼獨樹一格。

「除了Google和Meta之外,還有六家新創公司,基本上都擁有非常相似的技術。」LeCun 補充道。

接著,LeCun小酸了一把-聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

#「ChatGPT用的是以自監督方式進行預訓練的Transformer架構,而自監督學習是本人長期以來一直提倡的,那會兒OpenAI還沒誕生呢。」

其中,Transformer是Google的發明。這種語言神經網絡,正是GPT-3等大型語言模式的基礎。

而第一個神經網路語言模型,Yoshua Bengio早在20年前就提出了。 Bengio的注意力機制後來被Google用於Transformer,之後更是成為了所有語言模型中的關鍵元素。

另外,ChatGPT用的是人類回饋強化學習(RLHF)的技術,也是由GoogleDeepMind實驗室開創的。

在LeCun看來,ChatGPT與其說是一個科學突破,不如說是一項成功的工程案例。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點OpenAI的技術「在基礎科學方面並沒有什麼創新性,它只是設計得很好而已。」

「當然啦,我不會為此批評他們。」

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點我並不是批評OpenAI的工作,也不是在批評他們的主張。

我是想修正大眾和媒體的看法,他們普遍認為ChatGPT是一種創新且獨特的技術突破,然而事實並非如此。

在紐約時報記者Cade Metz的座談會上,LeCun感受到了好事者的疑問。

「你可能想問,為什麼谷歌和Meta沒有類似的系統呢?我的回答是,如果谷歌和Meta推出這種會胡說八道的聊天機器人,損失會相當慘重。」他笑著說。

無獨有偶,OpenAI被微軟等金主看好、身價飆升至290億美元的新聞一出,馬庫斯也連夜在博客上寫了一篇文章嘲諷。

在文中,馬庫斯爆出一句金句:你OpenAI能做啥谷歌做不到的事,值290億美元天價?

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

Google、Meta、DeepMind、OpenAI大PK!

######話不多說,咱們把這幾家AI巨頭的聊天機器人都拉出來遛遛,用數據說話。 ######LeCun說許多公司和實驗室都有類似ChatGPT的AI聊天機器人,此言不虛。 ######ChatGPT並不是第一個基於語言模型的AI聊天機器人,它有很多「前輩」。 ######在OpenAI之前,Meta、Google、DeepMind等都發布了自己的聊天機器人,像是Meta的BlenderBot、Google的LaMDA、DeepMind的Sparrow。 ######還有一些團隊,也公佈了自己的開源聊天機器人計畫。例如,來自LAION的Open-Assistant。 ###############在Huggingface的一篇部落格中,幾位作者調查了關於RLHF、SFT、IFT、CoT(它們都是ChatGPT的關鍵字)這些主題的重要論文,對它們進行了分類和總結。 ###

他們製成了一個表,根據公開存取、訓練資料、模型架構和評估方向等細節,對BlenderBot、LaMDA、Sparrow和InstructGPT這些AI聊天機器人進行了比較。

注意:因為ChatGPT沒有記錄,所以他們使用的是InstructGPT的細節,InstructGPT是一個來自OpenAI的指令微調模型,可以被認為是ChatGPT的基礎。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

ChatGPT/ InstructGPT##GoogleMetaDeepMind#OpenAI存取權封閉已公開#已封閉1.4兆#存取網路✔️##✔️微調資料規模高品質:6.4K落地性:4K##✖️#

不難發現,儘管在訓練資料、基礎模型和微調方面存在許多差異,但這些聊天機器人都有一個共同點——遵循指令。

例如,你可以透過指令讓ChatGPT寫一首關於微調的詩。

可以看到,ChatGPT非常「識相」,寫詩都不忘拍LeCun和Hinton兩位祖師爺的馬屁。

隨後激情洋溢地讚頌道:「微調啊,微調,你是一支美麗的舞蹈。」

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

##從預測文本到遵循指示

通常情況下,基礎模型的語言建模,是不足以讓模型學會如何遵循使用者指令的。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

在模型的訓練中,研究人員除了會採用經典的NLP任務(例如情緒、文字分類、總結等),還會使用指令微調(IFT),也就是在非常多樣化的任務上透過文字指令對基礎模型進行微調。

其中,這些指令範例由三個主要部分組成:指令、輸入和輸出。

輸入是可選的,有些任務只需要指令,如上面ChatGPT範例中的開放式生成。

當一個輸入和輸出出現時,就形成了一個範例。對於一個給定的指令,可以有多個輸入和輸出範例。例如下面這個例子:

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

IFT的數據,通常是人類寫的指令和使用語言模型引導的指令範例的集合。

在引導過程中,LM在few-shot(小樣本)的設定中被提示(如上圖),並被指示產生新的指令、輸入和輸出。

在每一輪中,模型會被提示從手動編寫和模型產生的樣本中選擇。

人類和模型對創建資料集的貢獻量像一個光譜一樣(見下圖)。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

一端是純粹的模型產生的IFT資料集,如Unnatural Instructions,另一端是大量人工生成的指令,如Super-natural instructions。

介於這兩者之間的,是使用一套規模較小但品質更高的種子資料集,然後進行引導的工作,如Self-instruct。

為IFT整理資料集的另一種方式是,利用現有的關於各種任務(包括提示)的高品質眾包NLP資料集,並使用統一的模式或不同的範本將這些資料集轉換成指令。

這方面的工作包括T0、自然指令資料集(Natural instructions dataset)、FLAN LM和OPT-IML。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

自然指令資料集相關論文:https://arxiv.org/abs/2104.08773

#對模型進行微調

#另一方面,OpenAI的InstructGPT、DeepMind的Sparrow和Anthropic的Constitutional AI都採用了基於人類回饋的強化學習(RLHF),也就是人類偏好的註解。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

在RLHF中,一組模型回應根據人類回饋進行排序(例如,選擇一個更受歡迎的文字簡介)。

接下來,研究人員在這些註解過的反應上訓練一個偏好模型,為RL優化器傳回一個標量獎勵。

最後,透過強化學習訓練聊天機器人來模擬這個偏好模型。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

思考鏈(CoT)提示,是指令範例的一個特例,它透過誘導聊天機器人逐步推理,以此來產生輸出。

用CoT進行微調的模型,會使用帶有人類註釋的分步推理的指令資料集。

這就是那句著名的prompt——「let's think step by step」的起源。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

下面的範例取自「Scaling Instruction-Finetuned Language Models」。其中,橙色突出了指令,粉紅色顯示了輸入和輸出,藍色是CoT推理。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

論文指出,採用CoT微調的模型,在涉及常識、算術和符號推理的任務中表現得更好。

此外,CoT微調在敏感話題方面也非常有效(有時比RLHF做得更好),尤其是可以避免模型擺爛——「對不起,我無法回答」。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

安全地遵循指令

#如剛才所提到的, 指令微調的語言模型並不能永遠產生有用且安全的響應。

例如,它會透過給予無用的回答來逃避,例如「對不起,我不明白」;或對拋出敏感話題的用戶輸出不安全的回應。

為了改善這種行為,研究人員透過監督微調(SFT)的形式,在高品質的人類註釋資料上對基礎語言模型進行微調,從而提升模型的有用性和無害性。

聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點

SFT和IFT的連結非常緊密。 IFT可以看作是SFT的子集。在最近的文獻中,SFT階段經常用於安全主題,而不是用於在IFT之後完成的特定指令主題。

在將來,它們的分類和描述應該會有更清晰的用例。

另外,Google的LaMDA也是在一個有安全註解的對話資料集上進行微調的,該資料集有基於一系列規則的安全註釋。

這些規則通常由研究人員預先定義和開發,包含了一系列廣泛的主題,包括傷害、歧視、錯誤訊息等。

AI聊天機器人的下一步

關於AI聊天機器人,目前仍有許多開放性問題有待探索,例如:

1. RL在從人類回饋中學習方面有多重要?我們能在IFT或SFT中透過更高品質的資料訓練獲得RLHF的效能嗎?

2. Sparrow中的SFT RLHF,與LaMDA中僅使用SFT,兩者的安全性如何比較?

3. 鑑於我們已經有了IFT、SFT、CoT和RLHF,那麼還有多少預訓練是必要的?有哪些權衡因素?最好的基礎模型是哪一個(包括公開的和非公開的)?

4. 現在這些模型都是精心設計的,其中研究人員會專門搜尋故障模式,並根據揭露的問題影響未來的訓練(包括提示和方法)。我們如何有系統地記錄這些方法的效果並進行復現?

總結一下

1. 與訓練資料相比,只需拿出非常小的一部分用於指令微調(幾百個數量級即可)。

2. 監督微調利用人類註釋,可以讓模型的輸出更加安全有用。

3. CoT微調提高了模型在逐步思考任務上的表現,並使模型不會總是逃避敏感問題。

參考資料:

https://huggingface.co/blog/dialog-agents


LaMDA

BlenderBot 3

Sparrow

組織機構

### 有限###

參數規模

1370億

1750億

#700億

1750億

基礎模型

未知

OPT

#Chinchilla

GPT-3.5

語料庫規模

2.81兆

1000億

###✔️###

✔️

✖️

監督微調

✔️

##✔️

✔️

安全性:8K

IR: 49K

20個NLP資料集,範圍從18K到1.2M

###########12.7K(ChatGPT可能更多)##################RLHF############ ✖️############✖️############✔️############✔️########## ########人工安全規則###
##✔

##✔

#✖️

以上是聚焦Google、Meta、OpenAI的聊天機器人大比拼,ChatGPT讓LeCun不滿成為話題焦點的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
5個用於微調LLM的負擔得起的雲平台5個用於微調LLM的負擔得起的雲平台Apr 25, 2025 am 10:30 AM

微調大語言模型(LLM)很昂貴,需要強大的GPU和實質性的計算資源。 但是,負擔得起

DeepSeek V3 vs Llama 4:哪種模型統治至高無上? - 分析VidhyaDeepSeek V3 vs Llama 4:哪種模型統治至高無上? - 分析VidhyaApr 25, 2025 am 10:27 AM

在不斷發展的大語言模型的景觀中,DeepSeek V3 vs Llama 4已成為開發人員,研究人員和AI愛好者的最熱門對決之一。無論您是針對燃燒速度的輸液而優化

什麼是開源和開放重量模型?什麼是開源和開放重量模型?Apr 25, 2025 am 10:19 AM

DeepSeek模型和Google的Gemma 3強調了“開放” AI模型開發的增長趨勢,強調了出色的推理能力和輕量級設計。 Openai準備通過即將到來的Quo為這個生態系統做出貢獻

下一個項目的前13個高級抹布技術下一個項目的前13個高級抹布技術Apr 25, 2025 am 10:07 AM

AI可以大規模產生真正相關的答案嗎?我們如何確保它了解複雜的多轉交談?我們如何避免自信地吐出不正確的事實?這些是Mo的挑戰

Llama 4型號:Meta AI正在開放購買最好的! - 分析VidhyaLlama 4型號:Meta AI正在開放購買最好的! - 分析VidhyaApr 25, 2025 am 10:06 AM

Meta的Llama 4:開源AI Powerhouses的三重奏 Meta AI通過同時發布了Llama 4 Banner下的三種開創性的大語言模型(LLM),從而破壞了AI景觀:Scout,Maverick和Beamemoth。 這一舉動與SH進行了對比

代理商OPS的十大工具代理商OPS的十大工具Apr 25, 2025 am 10:05 AM

當AI代理承擔更複雜的任務時,簡單地構建它們還不夠。管理他們的績效,可靠性和效率同樣至關重要。這就是代理商操作的來源。它可以幫助組織監視,優化,

7個免費的chatgpt替代品來創建吉卜力風格的圖像7個免費的chatgpt替代品來創建吉卜力風格的圖像Apr 25, 2025 am 09:48 AM

解鎖吉卜力風格的AI藝術的魔力:免費,簡單的方法! AI生成的藝術的最近激增模仿了吉卜力的吉卜力工作室的迷人風格,這吸引了互聯網。 雖然OpenAI的GPT-4O提供了令人印象深刻的功能,但需求量很高。

AI通過圖靈測試:GPT-4.5揭示了未來AI通過圖靈測試:GPT-4.5揭示了未來Apr 25, 2025 am 09:42 AM

這篇博客文章探討了2025年聖地亞哥UC研究的開創性結果,其中高級語言模型(LLMS)(如GPT-4.5)令人信服地通過了現代化的圖靈測試,通常在模仿人類對話的能力方面表現出色的真實人物

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境