搜尋
首頁科技週邊人工智慧谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

與自然語言處理類似,對預訓練視覺主幹的遷移提高了模型在各種視覺任務上的表現。更大的資料集、可擴展的架構和新的訓練方法都推動了模型效能的提升。

然而,視覺模型仍然遠遠落後於語言模型。具體來說,迄今為止最大的視覺模型 ViT 只有 4B 參數,而入門級語言模型通常超過 10B 參數,更別說具有 540B 參數的大型語言模型。

為了探索AI 模型的性能極限,Google Research 最近在CV 領域的一項研究,率先將Vision Transformer 參數量擴展到了22B,提出ViT-22B,與之前類似的模型參數量4B 相比,可以說這是迄今為止最大的稠密型ViT 模型。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

論文網址:https://arxiv.org/pdf/2302.05442.pdf

#對比之前最大的ViT- G 和ViT-e,表1 給出了比較結果,由下表可得,ViT-22B 主要是擴展了模型的寬度,使得參數量更大,深度和ViT-G 一樣。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

目前的ViT 大模型

正如這位知乎網友所說,難道是谷歌在ChatGPT 上輸了一局,勢必要在CV 領域爭口氣?

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

如何做到的?原來研究早期,他們發現在擴展 ViT 的過程中,出現了訓練不穩定性,並且可能會帶來架構變化。然後研究人員仔細設計模型,並以前所未有的效率實現模型並行訓練。 ViT-22B 的品質是透過一套全面的任務來評估的,從(少樣本)分類到密集輸出任務,在這些任務中,它達到或超過了當前 SOTA 水平。例如,即使用作凍結的視覺特徵提取器,ViT-22B 在 ImageNet 上的準確率也達到了 89.5%。透過訓練 text tower 來匹配這些視覺特徵,它在 ImageNet 上實現了 85.9% 的零樣本設定準確率。此外,該模型可以看作是一個教師,用作蒸餾目標,研究人員訓練了一個 ViT-B 學生模型,在 ImageNet 上的準確率為 88.6%,達到了此類規模模型上 SOTA 水平。

模型架構

ViT-22B 是基於Transformer 的編碼器模型,類似於原始Vision Transformer 架構,但包含以下三個主要修改,以提高效率和大規模訓練的穩定性:平行層、查詢/ 鍵(QK)歸一化和omitted biases。

並行層。如同Wang 和Komatsuzaki 研究所述,該研究設計了一個Attention 和MLP 並行結構:

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

#這可以透過組合MLP 和注意力塊的線性投影來實現額外的並行化。值得注意的是,用於查詢 / 鍵 / 值投影的矩陣乘法和 MLP 的第一線性層被融合到一個單獨的操作中,對於 MLP 的注意力外投影和第二層線性層也是如此。

QK 歸一化。訓練大模型的一個困難是模型的穩定性,在將 ViT 擴展的過程中,研究人員發現在數千輪的 step 後訓練損失呈發散性。特別是在 8B 參數的模型中這種現象特別突出。為了穩定模型訓練,研究人員採用 Gilmer 等人的方法,在點積注意力計算之前對查詢和鍵應用 LayerNorm 歸一化操作,以提升訓練的穩定性。具體來說,注意力權重計算為:#

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

omitted biases。在 PaLM 之後,偏置項從 QKV 投影中移除,並且所有的 Layernorm 都在沒有偏壓的情況下應用,從而提高了加速器的利用率 (3%),且品質沒有下降。然而,與 PaLM 不同的是,研究人員對 MLP 密集層使用了偏置項,即便如此,這種方式在兼顧品質的同時,速度並沒有下降。 

圖 2 展示了一個 ViT-22B 編碼器區塊。嵌入層在原有 ViT 的基礎上進行了 patch 提取、線性投影和添加位置嵌入等操作。研究人員使用多頭注意力池化來聚合頭中的每個 token 表示。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

ViT-22B 使用 14 × 14 的 patch,影像解析度為 224 × 224。 ViT-22B 採用了一種學習到的一維位置嵌入。在對高解析度影像進行微調期間,研究人員根據預訓練的位置嵌入在原始影像中的位置執行二維插值。

訓練基礎設施與效率

ViT-22B 使用 FLAX 函式庫,實作方式是 JAX,並在 Scenic 中建置。它同時利用了模型和資料並行性。值得一提的是,研究人員使用了 jax. xmap API,它提供了對所有中間體的分片(例如權重和激活)以及晶片間通信的明確控制。研究人員將晶片組織成大小為 t × k 的 2D 邏輯網格,其中 t 是資料平行軸的大小,k 是模型軸的大小。然後,對於 t 組中的每個組,k 個設備獲得相同批次的圖像,每個設備只保留 1/k 的激活,並負責計算所有線性層輸出的 1/k(詳細內容如下)。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

#圖3:非同步並行線性操作(y = Ax):跨裝置的重疊通訊與計算的模型並行矩陣乘法。

非同步並行線性運算。為了最大限度地提高吞吐量,必須考慮計算和通訊。也就是說,如果希望這些操作在分析上等效於未分片的情況,就必須盡可能少地進行通信,理想情況下讓它們重疊,這樣就可以保持矩陣乘法單元(FLOP 的大部分容量所在)始終處於繁忙狀態。

參數分片。該模型在第一個軸上是資料並行的。每個參數可以在這個軸上完全複製,也可以讓每個裝置保存它的一個區塊。研究人員選擇從模型參數中分割一些大張量,以便能夠擬合更大的模型和批次大小。

使用這些技術,ViT-22B 在 TPUv4 上訓練期間,每個核心每秒處理 1.15k token。 ViT-22B 的模型 flops 利用率(MFU)為 54.9%,顯示硬體的使用非常有效。請注意,PaLM 報告的 MFU 為 46.2%,而研究人員在相同硬體上為 ViT-e(僅數據並行)測量的 MFU 為 44.0%。

實驗結果

實驗探討了 ViT-22B 用於影像分類的評估結果。

表 2 結果顯示,ViT-22B 在各種指標上仍有顯著的改善。此外,研究表明,像 ViT-22B 這樣的大型模型的 Linear probing 可以接近或超過具有高分辨率的小型模型的 full fine-tuning 性能,通常成本更小、更容易做到。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

研究進一步在細粒度分類資料集iNaturalist 2017 上測試線性可分離性,將ViT-22B 與其他ViT 變體進行比較。研究測試了 224px 和 384px 的輸入解析度。結果如圖 4。研究觀察到 ViT-22B 明顯優於其他 ViT 變體,特別是在標準的 224px 輸入解析度下。這表明 ViT-22B 中大量的參數對於從圖像中提取詳細資訊是有用的。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

表 3 顯示了 ViT-22B 對 CLIP、ALIGN、BASIC、CoCa、LiT 模型的零樣本遷移結果。表 3 底部比較了三個 ViT 模型效能。

在所有的 ImageNet 測試集中,ViT-22B 取得了相當或更好的結果。值得注意的是,ObjectNet 測試集上的零樣本結果與 ViT 模型大小高度相關。最大的 ViT-22B 將新的 SOTA 設定在具有挑戰性的 ObjectNet 測試集中。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

Out-of-distribution (OOD)。研究建立了一個從 JFT 到 ImageNet 的標籤映射,以及從 ImageNet 到不同分佈外資料集的標籤映射,即 ObjectNet、ImageNet-v2、ImageNet- R 和 ImageNet- A。

目前可以確認的結果是,與 ImageNet 上的改進一致,擴展模型增加了分佈外性能。這適用於只看過 JFT 影像的模型,以及在 ImageNet 上進行微調的模型。在這兩種情況下,ViT-22B 在更大的模型上都延續了 OOD 表現更好的趨勢(圖 5,表 11)。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

此外,研究人員也研究了ViT-22B 模型在語意分割和單目深度估計任務中捕獲的幾何和空間資訊品質。

語意分割。研究人員在三個基準上評估 ViT-22B 作為語意分割主幹:ADE20K、Pascal Context 和 Pascal VOC。從表 4 可以看出,當只看到少量分割遮罩時,ViT-22B 主幹遷移效果較好。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

單目深度估計。表 5 總結了研究的主要發現。從最上面的行(DPT 解碼器)中可以觀察到,與不同的主幹相比,使用 ViT-22B 特性產生了最佳的性能(在所有指標上)。透過將 ViT-22B 主幹與 ViT-e(一個較小的模型,但在與 ViT-22B 相同的資料上進行訓練)進行比較,研究發現擴展架構可以提高效能。

此外,將ViT-e 主幹與ViT-L(與ViT-e 類似的架構,但訓練的資料較少)進行比較,研究發現這些改進也來自於擴展訓練前的資料。這些發現表明,更大的模型和更大的數據集都有助於提高效能。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

該研究也在影片資料集上進行了探索。表 6 展示了在 Kinetics 400 和 Moments in Time 資料集上的視訊分類結果,顯示可以使用凍結的主幹實現具有競爭力的結果。研究首先與 ViT-e 進行比較,ViT-e 擁有最大的先驗視覺主幹模型,由 40 億個參數組成,並且也在 JFT 資料集上進行訓練。我們觀察到更大的 ViT-22B 模型在 Kinetics 400 上提高了 1.5 分,在 Moments in Time 上提高了 1.3 分。

最後研究注意到,透過完整的端對端微調,還有進一步改進的空間。

谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動

更多技術細節請參閱原始論文。

以上是谷歌將視覺遷移模型參數擴展到220億,自ChatGPT火爆後研究者集體行動的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
高維數據的高級矢量索引技術高維數據的高級矢量索引技術Apr 11, 2025 am 10:16 AM

高維矢量搜索:掌握高級索引技術 在當今數據驅動的世界中,高維矢量對於推薦系統,圖像識別,自然語言處理(NLP)和異常等應用至關重要

用OpenAI' s剪輯VIT-L14進行零擊圖像分類用OpenAI' s剪輯VIT-L14進行零擊圖像分類Apr 11, 2025 am 10:04 AM

Openai的剪輯(對比語言 - 圖像預訓練)模型,特別是剪輯VIT-L14變體,代表了多模式學習和自然語言處理的重大進步。 這種強大的計算機視覺系統在Represe上擅長

建立沒有代碼的AI代理的7個步驟-Analytics Vidhya建立沒有代碼的AI代理的7個步驟-Analytics VidhyaApr 11, 2025 am 10:03 AM

利用AI代理的功能使用Wordware:無需輕鬆AI代理創建的無代碼平台。 人工智能代理人正在徹底改變我們與計算機互動,自動化任務和簡化決策的方式。 該博客演示瞭如何構建

手機上的LLM:現在和將來的可能性 - 分析Vidhya手機上的LLM:現在和將來的可能性 - 分析VidhyaApr 11, 2025 am 09:58 AM

生成AI:下一個智能手機戰場 智能手機行業陷入了激烈的競爭中:整合先進的生成AI的競賽。 從增強用戶互動到提高生產率,賭注很高。蘋果的iPhone 16

在2025年遵循的十大生成AI子列表 - 分析Vidhya在2025年遵循的十大生成AI子列表 - 分析VidhyaApr 11, 2025 am 09:51 AM

生成AI:您的10個基本Reddit社區的指南 生成的AI正在迅速發展,新模型不斷出現。 保持更新至關重要,Reddit提供專門針對該領域的充滿活力的社區。本文凸顯了T

AI模型中的主要挑戰和局限性-Analytics VidhyaAI模型中的主要挑戰和局限性-Analytics VidhyaApr 11, 2025 am 09:44 AM

介紹 人工智能(AI)已迅速整合到各種工作場所中,這是由於AI研發和開發的大量投資所推動。 AI的應用程序範圍很廣,從虛擬助手等簡單任務到com

處理SQL中的無效值處理SQL中的無效值Apr 11, 2025 am 09:37 AM

介紹 在數據庫的領域中,零值通常會帶來獨特的挑戰。 代表缺失,未定義或未知數據,它們可能使數據管理和分析複雜化。考慮一個缺少客戶反饋或orde的銷售數據庫

如何將Google Gemini集成到Tableau儀表板中?如何將Google Gemini集成到Tableau儀表板中?Apr 11, 2025 am 09:27 AM

利用Google Gemini在Tableau儀表板上的力量:AI驅動的增強 Tableau的強大可視化功能,跨越數據準備(Tableau Prep Builder),數據講故事(Tableau Desktop)和協作共享(TABL)

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),