搜尋
首頁科技週邊人工智慧Stable Diffusion能超越JPEG等演算法,提高影像壓縮率並保持清晰度?

基於文字的影像生成模型火了,出圈的不只擴散模型,還有開源的Stable Diffusion模型。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

最近一位瑞士的軟體工程師Matthias Bühlmann無意間發現,Stable Diffusion不僅能用來產生影像,還可以用來壓縮點陣圖影像,甚至比JPEG和WebP的壓縮率更高。

例如一張美洲駱駝的照片,原圖為768KB,使用JPEG壓縮到5.66KB,而Stable Diffusion可以進一步壓縮到4.98KB ,而且能夠保留更多高解析度的細節以及更少的壓縮偽影,肉眼可見地優於其他壓縮演算法。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

不過這種壓縮方式也有缺陷,即不適合壓縮人臉和文字圖像,在某些情況下,甚至會產生一些原圖並不存在內容

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

雖然重新訓練一個自編碼器也能做到類似Stable Diffusion的壓縮效果,但使用Stable Diffusion的一個主要優勢在於,有人已經投入了上百萬的資金幫你訓練了一個,你又何必重新花錢訓練一個壓縮模型呢?

Stable Diffusion如何壓縮圖像

擴散模型正在挑戰生成模型的霸主地位,對應的開源Stable Diffusion模型也在機器學習社群中掀起一場藝術革命。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

Stable Diffusion由三個訓練後的神經網路串聯得到,即一個變分自編碼器(VAE)U-Net模型一個文字編碼器

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

變分自編碼器對影像空間中的影像進行編碼和解碼,從而獲得該影像在潛空間的表徵向量,以一個解析度更低(64x64)具有更高精度(4x32bit)的向量來表示來源影像(3x8或4x8bit的512x512)

VAE在將影像編碼到潛空間的訓練過程主要依賴自監督學習,即輸入和輸出都是來源影像,因此隨著模型進一步訓練,不同版本的模型的潛空間表徵可能看起來不同。

使用Stable Diffusion v1.4的潛空間表徵透過重新映射和解釋為4通道彩色影像後,看起來就是下圖的中間影像,來源影像中的主要特徵仍然可見

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

要注意的是,VAE往返編碼一次並不是無損的

例如在解碼之後,藍色帶子上的ANNA名字就沒有來源影像那麼清晰了,可讀性顯著降低。

Stable Diffusion v1.4中的變分自編碼器不太擅長表示小文字以及人臉圖像,不知道v1.5版本是否會改善。

Stable Diffusion的主要壓縮演算法就是利用影像的這種潛空間表徵,從短文本描述產生新的影像。

從潛空間表徵的隨機噪聲開始,使用充分訓練的U-Net迭代去除潛空間圖像的噪聲,用一種更簡單的表徵輸出模型認為它在這個噪聲中「看到」的預測,有點像我們在看雲的時候,從不規則的圖形中還原出腦海裡的形狀或面孔

當使用Stable Diffusion來產生圖像時,這個迭代去噪步驟是由第三個元件,即文字編碼器引導的,該編碼器為U-Net提供關於它應該嘗試在噪音中看到什麼的訊息。

不過對於壓縮任務來說,並不需要文字編碼器,所以實驗過程只創建了一個空字串的編碼用於告訴U-Net在影像重建過程中進行非引導去雜訊

為了使用Stable Diffusion作為影像壓縮編解碼器,演算法需要有效地壓縮由VAE產生的潛表徵。

在實驗中可以發現,對潛表徵進行下取樣或直接使用現有的有損影像壓縮方法,都會大幅降低重建影像的品質。

但作者發現 VAE 的解碼似乎對潛表徵的量化(quantization)非常有效。

透過從浮點到8位元無符號整數的潛量化進行縮放、拖曳(clamping)和重新映射,只會產生很小的可見重構錯誤。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

透過量化8位元的潛表徵,影像表示的資料大小現在是64*64*4*8bit=16kB ,遠小於未壓縮來源影像的512*512*3*8bit=768kB

#如果潛表徵的位數小於8bit,無法產生比較好的效果。

如果對圖像進一步執行調色板(palettizing)抖動(dithering),則量化效果就會再次提升。

使用256*4*8位元向量和Floyd-Steinberg抖動的潛表徵創建了一個調色板表示,使資料大小進一步壓縮到64*64*8 256*4 *8bit=5kB

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

潛空間調色盤的抖動會引入噪聲,從而扭曲了解碼結果。但由於Stable Diffusion是基於潛噪聲的去除,所以可以使用U-Net來去除抖動所造成的噪音。

經過4次迭代,重建結果在視覺上非常接近未量化的版本。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

雖然資料量大大減少了(來源影像為壓縮影像的155倍大),但效果是非常好的,不過也引入了有些偽影(例如原圖的心形圖案中不存在偽影)。

有趣的是,這種壓縮方案引入的偽影對影像內容的影響比對影像品質的影響更大,而且以這種方式壓縮的影像可能包含這些類型的壓縮偽影。

作者也用zlib對調色盤和索引進行了無損壓縮,在測試樣本中,大多數的壓縮結果都小於5kb,但這種壓縮方法仍然有更多的最佳化空間。

為了評估該壓縮編解碼器,作者沒有使用任何在網路上找到的標準測試圖像,因為網路上的圖像都有可能在Stable Diffusion的訓練集中出現過,而壓縮這類影像可能會導致不公平的對比優勢。

為了盡可能公平地進行比較,作者使用了Python圖像庫中最高品質的編碼器設置,以及使用mozjpeg庫添加了壓縮後的JPG數據的無損數據壓縮。

值得注意的是,雖然Stable Diffusion的結果主觀上看起來比JPG和WebP壓縮的圖像要好得多,但在標準測量指標(如PSNR或SSIM)方面,它們並沒有明顯更好,但也沒有更差。

只是引入的偽影類型不那麼明顯,因為它們對影像內容的影響大於對影像品質的影響。

這種壓縮方法也有一點危險,雖然重建特徵的品質很高,但內容可能會受到壓縮偽影的影響,即使它看起來非常清晰。

例如,在一張測試影像中,雖然Stable Diffusion作為編解碼器在保持影像的品質方面要好得多,甚至連相機顆粒紋理(camera grain)都能保留下來(這是大多數傳統壓縮演算法難以做到的) ,但其內容仍然受到壓縮偽影的影響,像建築物形狀這樣的精細特徵可能會改變。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

雖然在JPG壓縮影像中當然不可能比在Stable Diffusion壓縮影像中辨識出更多的真實值,但Stable Diffusion壓縮結果的高視覺品質可能具有欺騙性,因為JPG和WebP中的壓縮偽影更容易識別。

如果你也想動手復現一遍實驗,作者在Colab上開源了程式碼。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

程式碼連結:https://colab.research.google.com/drive/1Ci1VYHuFJK5eOX9TB0Mq4NsqkeDrMaaH?usp=sharing

最後,作者表示,文章中設計的實驗仍然是相當淺顯的,但效果仍然令人驚喜,未來仍有很大的改進空間

以上是Stable Diffusion能超越JPEG等演算法,提高影像壓縮率並保持清晰度?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
讓我們跳舞:結構化運動以微調我們的人類神經網讓我們跳舞:結構化運動以微調我們的人類神經網Apr 27, 2025 am 11:09 AM

科學家已經廣泛研究了人類和更簡單的神經網絡(如秀麗隱桿線蟲中的神經網絡),以了解其功能。 但是,出現了一個關鍵問題:我們如何使自己的神經網絡與新穎的AI一起有效地工作

新的Google洩漏揭示了雙子AI的訂閱更改新的Google洩漏揭示了雙子AI的訂閱更改Apr 27, 2025 am 11:08 AM

Google的雙子座高級:新的訂閱層即將到來 目前,訪問Gemini Advanced需要$ 19.99/月Google One AI高級計劃。 但是,Android Authority報告暗示了即將發生的變化。 最新的Google P中的代碼

數據分析加速度如何求解AI的隱藏瓶頸數據分析加速度如何求解AI的隱藏瓶頸Apr 27, 2025 am 11:07 AM

儘管圍繞高級AI功能炒作,但企業AI部署中潛伏的巨大挑戰:數據處理瓶頸。首席執行官慶祝AI的進步時,工程師努力應對緩慢的查詢時間,管道超載,一個

Markitdown MCP可以將任何文檔轉換為Markdowns!Markitdown MCP可以將任何文檔轉換為Markdowns!Apr 27, 2025 am 09:47 AM

處理文檔不再只是在您的AI項目中打開文件,而是將混亂變成清晰度。諸如PDF,PowerPoints和Word之類的文檔以各種形狀和大小淹沒了我們的工作流程。檢索結構化

如何使用Google ADK進行建築代理? - 分析Vidhya如何使用Google ADK進行建築代理? - 分析VidhyaApr 27, 2025 am 09:42 AM

利用Google的代理開發套件(ADK)的力量創建具有現實世界功能的智能代理!該教程通過使用ADK來構建對話代理,並支持Gemini和GPT等各種語言模型。 w

在LLM上使用SLM進行有效解決問題-Analytics Vidhya在LLM上使用SLM進行有效解決問題-Analytics VidhyaApr 27, 2025 am 09:27 AM

摘要: 小型語言模型 (SLM) 專為效率而設計。在資源匱乏、實時性和隱私敏感的環境中,它們比大型語言模型 (LLM) 更勝一籌。 最適合專注型任務,尤其是在領域特異性、控制性和可解釋性比通用知識或創造力更重要的情況下。 SLM 並非 LLMs 的替代品,但在精度、速度和成本效益至關重要時,它們是理想之選。 技術幫助我們用更少的資源取得更多成就。它一直是推動者,而非驅動者。從蒸汽機時代到互聯網泡沫時期,技術的威力在於它幫助我們解決問題的程度。人工智能 (AI) 以及最近的生成式 AI 也不例

如何將Google Gemini模型用於計算機視覺任務? - 分析Vidhya如何將Google Gemini模型用於計算機視覺任務? - 分析VidhyaApr 27, 2025 am 09:26 AM

利用Google雙子座的力量用於計算機視覺:綜合指南 領先的AI聊天機器人Google Gemini擴展了其功能,超越了對話,以涵蓋強大的計算機視覺功能。 本指南詳細說明瞭如何利用

Gemini 2.0 Flash vs O4-Mini:Google可以比OpenAI更好嗎?Gemini 2.0 Flash vs O4-Mini:Google可以比OpenAI更好嗎?Apr 27, 2025 am 09:20 AM

2025年的AI景觀正在充滿活力,而Google的Gemini 2.0 Flash和Openai的O4-Mini的到來。 這些尖端的車型分開了幾週,具有可比的高級功能和令人印象深刻的基準分數。這個深入的比較

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具