一些業務場景我們需要使用多執行緒非同步執行任務,加快任務執行速度。
JDK5新增了Future接口,用來描述一個非同步計算的結果。
雖然Future 以及相關使用方法提供了異步執行任務的能力,但是對於結果的獲取卻是很不方便,我們必須使用Future.get()的方式阻塞調用線程,或者使用輪詢方式判斷Future.isDone 任務是否結束,再取得結果。
這兩種處理方式都不是很優雅,相關程式碼如下:
@Test public void testFuture() throws ExecutionException, InterruptedException { ExecutorService executorService = Executors.newFixedThreadPool(5); Future<String> future = executorService.submit(() -> { Thread.sleep(2000); return "hello"; }); System.out.println(future.get()); System.out.println("end"); }
同時,Future無法解決多個非同步任務需要相互依賴的場景,簡單點說就是,主執行緒需要等待子執行緒任務執行完畢之後在進行執行,這個時候你可能想到了「CountDownLatch」,沒錯確實可以解決,程式碼如下。
這裡定義兩個Future,第一個透過使用者id取得使用者訊息,第二個透過商品id取得商品資訊。
@Test public void testCountDownLatch() throws InterruptedException, ExecutionException { ExecutorService executorService = Executors.newFixedThreadPool(5); CountDownLatch downLatch = new CountDownLatch(2); long startTime = System.currentTimeMillis(); Future<String> userFuture = executorService.submit(() -> { //模拟查询商品耗时500毫秒 Thread.sleep(500); downLatch.countDown(); return "用户A"; }); Future<String> goodsFuture = executorService.submit(() -> { //模拟查询商品耗时500毫秒 Thread.sleep(400); downLatch.countDown(); return "商品A"; }); downLatch.await(); //模拟主程序耗时时间 Thread.sleep(600); System.out.println("获取用户信息:" + userFuture.get()); System.out.println("获取商品信息:" + goodsFuture.get()); System.out.println("总共用时" + (System.currentTimeMillis() - startTime) + "ms"); }
「運行結果」
取得使用者資訊:用戶A
取得商品資訊:商品A
總共用時1110ms
從執行結果可以看出結果都已經獲取,而且如果我們不用非同步操作,執行時間應該是:500 400 600 = 1500,用非同步操作後實際只用1110。
但Java8以後我不在認為這是一種優雅的解決方式,接下來來了解下CompletableFuture的使用。
@Test public void testCompletableInfo() throws InterruptedException, ExecutionException { long startTime = System.currentTimeMillis(); //调用用户服务获取用户基本信息 CompletableFuture<String> userFuture = CompletableFuture.supplyAsync(() -> //模拟查询商品耗时500毫秒 { try { Thread.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); } return "用户A"; }); //调用商品服务获取商品基本信息 CompletableFuture<String> goodsFuture = CompletableFuture.supplyAsync(() -> //模拟查询商品耗时500毫秒 { try { Thread.sleep(400); } catch (InterruptedException e) { e.printStackTrace(); } return "商品A"; }); System.out.println("获取用户信息:" + userFuture.get()); System.out.println("获取商品信息:" + goodsFuture.get()); //模拟主程序耗时时间 Thread.sleep(600); System.out.println("总共用时" + (System.currentTimeMillis() - startTime) + "ms"); }
運行結果
取得使用者資訊:使用者A
取得商品資訊:商品A
總共用時1112ms
透過CompletableFuture可以很輕鬆的實作CountDownLatch的功能,你以為這就結束了,遠遠不止,CompletableFuture比這要強多了。
例如可以實現:任務1執行完了再執行任務2,甚至任務1執行的結果,作為任務2的入參數等等強大功能,下面就來學學CompletableFuture的API。
CompletableFuture原始碼中有四個靜態方法用來執行非同步任務
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier){..} public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,Executor executor){..} public static CompletableFuture<Void> runAsync(Runnable runnable){..} public static CompletableFuture<Void> runAsync(Runnable runnable,Executor executor){..}
一般我們用上面的靜態方法來建立CompletableFuture,這裡也解釋下他們的差異:
#「supplyAsync」執行任務,支援傳回值。
「runAsync」執行任務,沒有回傳值。
3.1.1、「supplyAsync方法」
//使用默认内置线程池ForkJoinPool.commonPool(),根据supplier构建执行任务 public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) //自定义线程,根据supplier构建执行任务 public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)
3.1.2、「runAsync方法」
//使用默认内置线程池ForkJoinPool.commonPool(),根据runnable构建执行任务 public static CompletableFuture<Void> runAsync(Runnable runnable) //自定义线程,根据runnable构建执行任务 public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor)
對於結果的取得CompltableFuture類別提供了四種方式
//方式一 public T get() //方式二 public T get(long timeout, TimeUnit unit) //方式三 public T getNow(T valueIfAbsent) //方式四 public T join()
說明:
「get()和get(long timeout , TimeUnit unit)” => 在Future中就已經提供了,後者提供超時處理,如果在指定時間內未獲取結果將拋出超時異常
“getNow” => 立即取得結果不阻塞,結果計算已完成將傳回結果或計算過程中的異常,如果未計算完成將傳回設定的valueIfAbsent值
#「join」 => 方法裡不會拋出例外
範例
:
@Test public void testCompletableGet() throws InterruptedException, ExecutionException { CompletableFuture<String> cp1 = CompletableFuture.supplyAsync(() -> { try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } return "商品A"; }); // getNow方法测试 System.out.println(cp1.getNow("商品B")); //join方法测试 CompletableFuture<Integer> cp2 = CompletableFuture.supplyAsync((() -> 1 / 0)); System.out.println(cp2.join()); System.out.println("-----------------------------------------------------"); //get方法测试 CompletableFuture<Integer> cp3 = CompletableFuture.supplyAsync((() -> 1 / 0)); System.out.println(cp3.get()); }
「運行結果」:
第一個執行結果為 「商品B」,因為要先睡1秒結果不能立即取得
join方法取得結果方法裡不會拋異常,但是執行結果會拋出異常,拋出的異常為CompletionException
get方法取得結果方法裡將拋出異常,執行結果拋出的異常為ExecutionException
通俗點講就是,「做完第一個任務後,再做第二個任務,第二個任務也沒有回傳值」。
範例
@Test public void testCompletableThenRunAsync() throws InterruptedException, ExecutionException { long startTime = System.currentTimeMillis(); CompletableFuture<Void> cp1 = CompletableFuture.runAsync(() -> { try { //执行任务A Thread.sleep(600); } catch (InterruptedException e) { e.printStackTrace(); } }); CompletableFuture<Void> cp2 = cp1.thenRun(() -> { try { //执行任务B Thread.sleep(400); } catch (InterruptedException e) { e.printStackTrace(); } }); // get方法测试 System.out.println(cp2.get()); //模拟主程序耗时时间 Thread.sleep(600); System.out.println("总共用时" + (System.currentTimeMillis() - startTime) + "ms"); } //运行结果 /** * null * 总共用时1610ms */
「thenRun 和thenRunAsync有什麼差別呢?」
如果你執行第一個任務的時候,傳入了一個自訂執行緒池:
呼叫thenRun方法執行第二個任務時,則第二個任務和第一個任務是共用同一個執行緒池。
呼叫thenRunAsync執行第二個任務時,則第一個任務使用的是你自己傳入的執行緒池,第二個任務使用的是ForkJoin執行緒池。
說明
: 後面介紹的thenAccept和thenAcceptAsync,thenApply和thenApplyAsync等,它們之間的差異也是這個。
第一個任務執行完成後,執行第二個回呼方法任務,會將該任務的執行結果,作為入參 ,傳遞到回呼方法中,但是回呼方法是沒有回傳值的。
範例
@Test public void testCompletableThenAccept() throws ExecutionException, InterruptedException { long startTime = System.currentTimeMillis(); CompletableFuture<String> cp1 = CompletableFuture.supplyAsync(() -> { return "dev"; }); CompletableFuture<Void> cp2 = cp1.thenAccept((a) -> { System.out.println("上一个任务的返回结果为: " + a); }); cp2.get(); }
表示第一个任务执行完成后,执行第二个回调方法任务,会将该任务的执行结果,作为入参,传递到回调方法中,并且回调方法是有返回值的。
示例
@Test public void testCompletableThenApply() throws ExecutionException, InterruptedException { CompletableFuture<String> cp1 = CompletableFuture.supplyAsync(() -> { return "dev"; }).thenApply((a) -> { if (Objects.equals(a, "dev")) { return "dev"; } return "prod"; }); System.out.println("当前环境为:" + cp1.get()); //输出: 当前环境为:dev }
当CompletableFuture的任务不论是正常完成还是出现异常它都会调用「whenComplete」这回调函数。
「正常完成」:whenComplete返回结果和上级任务一致,异常为null;
「出现异常」:whenComplete返回结果为null,异常为上级任务的异常;
即调用get()时,正常完成时就获取到结果,出现异常时就会抛出异常,需要你处理该异常。
下面来看看示例
@Test public void testCompletableWhenComplete() throws ExecutionException, InterruptedException { CompletableFuture<Double> future = CompletableFuture.supplyAsync(() -> { if (Math.random() < 0.5) { throw new RuntimeException("出错了"); } System.out.println("正常结束"); return 0.11; }).whenComplete((aDouble, throwable) -> { if (aDouble == null) { System.out.println("whenComplete aDouble is null"); } else { System.out.println("whenComplete aDouble is " + aDouble); } if (throwable == null) { System.out.println("whenComplete throwable is null"); } else { System.out.println("whenComplete throwable is " + throwable.getMessage()); } }); System.out.println("最终返回的结果 = " + future.get()); }
正常完成,没有异常时:
正常结束
whenComplete aDouble is 0.11
whenComplete throwable is null
最终返回的结果 = 0.11
出现异常时:get()会抛出异常
whenComplete aDouble is null
whenComplete throwable is java.lang.RuntimeException: 出错了
java.util.concurrent.ExecutionException: java.lang.RuntimeException: 出错了
at java.util.concurrent.CompletableFuture.reportGet(CompletableFuture.java:357)
at java.util.concurrent.CompletableFuture.get(CompletableFuture.java:1895)
@Test public void testWhenCompleteExceptionally() throws ExecutionException, InterruptedException { CompletableFuture<Double> future = CompletableFuture.supplyAsync(() -> { if (Math.random() < 0.5) { throw new RuntimeException("出错了"); } System.out.println("正常结束"); return 0.11; }).whenComplete((aDouble, throwable) -> { if (aDouble == null) { System.out.println("whenComplete aDouble is null"); } else { System.out.println("whenComplete aDouble is " + aDouble); } if (throwable == null) { System.out.println("whenComplete throwable is null"); } else { System.out.println("whenComplete throwable is " + throwable.getMessage()); } }).exceptionally((throwable) -> { System.out.println("exceptionally中异常:" + throwable.getMessage()); return 0.0; }); System.out.println("最终返回的结果 = " + future.get()); }
当出现异常时,exceptionally中会捕获该异常,给出默认返回值0.0。
whenComplete aDouble is null
whenComplete throwable is java.lang.RuntimeException: 出错了
exceptionally中异常:java.lang.RuntimeException: 出错了
最终返回的结果 = 0.0
thenCombine / thenAcceptBoth / runAfterBoth都表示:「当任务一和任务二都完成再执行任务三」。
区别在于:
「runAfterBoth」 不会把执行结果当做方法入参,且没有返回值
「thenAcceptBoth」: 会将两个任务的执行结果作为方法入参,传递到指定方法中,且无返回值
「thenCombine」:会将两个任务的执行结果作为方法入参,传递到指定方法中,且有返回值
示例
@Test public void testCompletableThenCombine() throws ExecutionException, InterruptedException { //创建线程池 ExecutorService executorService = Executors.newFixedThreadPool(10); //开启异步任务1 CompletableFuture<Integer> task = CompletableFuture.supplyAsync(() -> { System.out.println("异步任务1,当前线程是:" + Thread.currentThread().getId()); int result = 1 + 1; System.out.println("异步任务1结束"); return result; }, executorService); //开启异步任务2 CompletableFuture<Integer> task2 = CompletableFuture.supplyAsync(() -> { System.out.println("异步任务2,当前线程是:" + Thread.currentThread().getId()); int result = 1 + 1; System.out.println("异步任务2结束"); return result; }, executorService); //任务组合 CompletableFuture<Integer> task3 = task.thenCombineAsync(task2, (f1, f2) -> { System.out.println("执行任务3,当前线程是:" + Thread.currentThread().getId()); System.out.println("任务1返回值:" + f1); System.out.println("任务2返回值:" + f2); return f1 + f2; }, executorService); Integer res = task3.get(); System.out.println("最终结果:" + res); }
「运行结果」
异步任务1,当前线程是:17
异步任务1结束
异步任务2,当前线程是:18
异步任务2结束
执行任务3,当前线程是:19
任务1返回值:2
任务2返回值:2
最终结果:4
applyToEither / acceptEither / runAfterEither 都表示:「两个任务,只要有一个任务完成,就执行任务三」。
区别在于:
「runAfterEither」:不会把执行结果当做方法入参,且没有返回值
「acceptEither」: 会将已经执行完成的任务,作为方法入参,传递到指定方法中,且无返回值
「applyToEither」:会将已经执行完成的任务,作为方法入参,传递到指定方法中,且有返回值
示例
@Test public void testCompletableEitherAsync() { //创建线程池 ExecutorService executorService = Executors.newFixedThreadPool(10); //开启异步任务1 CompletableFuture<Integer> task = CompletableFuture.supplyAsync(() -> { System.out.println("异步任务1,当前线程是:" + Thread.currentThread().getId()); int result = 1 + 1; System.out.println("异步任务1结束"); return result; }, executorService); //开启异步任务2 CompletableFuture<Integer> task2 = CompletableFuture.supplyAsync(() -> { System.out.println("异步任务2,当前线程是:" + Thread.currentThread().getId()); int result = 1 + 2; try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("异步任务2结束"); return result; }, executorService); //任务组合 task.acceptEitherAsync(task2, (res) -> { System.out.println("执行任务3,当前线程是:" + Thread.currentThread().getId()); System.out.println("上一个任务的结果为:" + res); }, executorService); }
运行结果
//通过结果可以看出,异步任务2都没有执行结束,任务3获取的也是1的执行结果
异步任务1,当前线程是:17
异步任务1结束
异步任务2,当前线程是:18
执行任务3,当前线程是:19
上一个任务的结果为:2
注意
如果把上面的核心线程数改为1也就是
ExecutorService executorService = Executors.newFixedThreadPool(1);
运行结果就是下面的了,会发现根本没有执行任务3,显然是任务3直接被丢弃了。
异步任务1,当前线程是:17
异步任务1结束
异步任务2,当前线程是:17
「allOf」:等待所有任务完成
「anyOf」:只要有一个任务完成
示例
allOf:等待所有任务完成
@Test public void testCompletableAallOf() throws ExecutionException, InterruptedException { //创建线程池 ExecutorService executorService = Executors.newFixedThreadPool(10); //开启异步任务1 CompletableFuture<Integer> task = CompletableFuture.supplyAsync(() -> { System.out.println("异步任务1,当前线程是:" + Thread.currentThread().getId()); int result = 1 + 1; System.out.println("异步任务1结束"); return result; }, executorService); //开启异步任务2 CompletableFuture<Integer> task2 = CompletableFuture.supplyAsync(() -> { System.out.println("异步任务2,当前线程是:" + Thread.currentThread().getId()); int result = 1 + 2; try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("异步任务2结束"); return result; }, executorService); //开启异步任务3 CompletableFuture<Integer> task3 = CompletableFuture.supplyAsync(() -> { System.out.println("异步任务3,当前线程是:" + Thread.currentThread().getId()); int result = 1 + 3; try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("异步任务3结束"); return result; }, executorService); //任务组合 CompletableFuture<Void> allOf = CompletableFuture.allOf(task, task2, task3); //等待所有任务完成 allOf.get(); //获取任务的返回结果 System.out.println("task结果为:" + task.get()); System.out.println("task2结果为:" + task2.get()); System.out.println("task3结果为:" + task3.get()); }
anyOf: 只要有一个任务完成
@Test public void testCompletableAnyOf() throws ExecutionException, InterruptedException { //创建线程池 ExecutorService executorService = Executors.newFixedThreadPool(10); //开启异步任务1 CompletableFuture<Integer> task = CompletableFuture.supplyAsync(() -> { int result = 1 + 1; return result; }, executorService); //开启异步任务2 CompletableFuture<Integer> task2 = CompletableFuture.supplyAsync(() -> { int result = 1 + 2; return result; }, executorService); //开启异步任务3 CompletableFuture<Integer> task3 = CompletableFuture.supplyAsync(() -> { int result = 1 + 3; return result; }, executorService); //任务组合 CompletableFuture<Object> anyOf = CompletableFuture.anyOf(task, task2, task3); //只要有一个有任务完成 Object o = anyOf.get(); System.out.println("完成的任务的结果:" + o); }
CompletableFuture 使我们的异步编程更加便利的、代码更加优雅的同时,我们也要关注下它,使用的一些注意点。
@Test public void testWhenCompleteExceptionally() { CompletableFuture<Double> future = CompletableFuture.supplyAsync(() -> { if (1 == 1) { throw new RuntimeException("出错了"); } return 0.11; }); //如果不加 get()方法这一行,看不到异常信息 //future.get(); }
Future需要获取返回值,才能获取到异常信息。如果不加 get()/join()方法,看不到异常信息。
小伙伴们使用的时候,注意一下哈,考虑是否加try...catch...或者使用exceptionally方法。
CompletableFuture的get()方法是阻塞的,如果使用它来获取异步调用的返回值,需要添加超时时间。
//反例 CompletableFuture.get(); //正例 CompletableFuture.get(5, TimeUnit.SECONDS);
CompletableFuture代码中又使用了默认的「ForkJoin线程池」,处理的线程个数是电脑「CPU核数-1」。在大量请求过来的时候,处理逻辑复杂的话,响应会很慢。一般建议使用自定义线程池,优化线程池配置参数。
CompletableFuture的get()方法是阻塞的,我们一般建议使用future.get(5, TimeUnit.SECONDS)。并且一般建议使用自定义线程池。
但是如果线程池拒绝策略是DiscardPolicy或者DiscardOldestPolicy,当线程池饱和时,会直接丢弃任务,不会抛弃异常。因此建议,CompletableFuture线程池策略最好使用AbortPolicy,然后耗时的异步线程,做好线程池隔离哈。
以上是Java8 CompletableFuture 如何實作非同步多執行緒程式設計?的詳細內容。更多資訊請關注PHP中文網其他相關文章!