二元搜尋樹又稱為二元排序樹,它或是一棵空樹**,或是具有以下性質的二元樹:
若它的左子樹不為空,則左子樹上所有節點的值都小於根節點的值
若它的右子樹不為空,則右子樹上所有節點的值都大於根節點的值
它的左右子樹也分別為二元搜尋樹
二元搜尋樹的查找類似於二分法查找
public Node search(int key) { Node cur = root; while (cur != null) { if(cur.val == key) { return cur; }else if(cur.val < key) { cur = cur.right; }else { cur = cur.left; } } return null; }
public boolean insert(int key) { Node node = new Node(key); if(root == null) { root = node; return true; } Node cur = root; Node parent = null; while(cur != null) { if(cur.val == key) { return false; }else if(cur.val < key) { parent = cur; cur = cur.right; }else { parent = cur; cur = cur.left; } } //parent if(parent.val > key) { parent.left = node; }else { parent.right = node; } return true; }
刪除操作較為複雜,但理解了其原理還是比較容易
設待刪除結點為cur, 待刪除結點的雙親結點為parent
1. cur 是root,則root = cur.right
2. cur 不是root,cur 是parent.left,則parent.left = cur.right
3. cur 不是root,cur 是parent.right,則parent.right = cur.right
##2. cur.right == null1. cur 是root,則root = cur.left2. cur 不是root,cur 是parent.left,則parent.left = cur.left3. cur 不是root,cur 是parent.right,則parent.right = cur.left 第二種情況和第一種情況相同,只是方向相反,這裡不再畫圖3. cur.left != null && cur.right != null#需要使用替換法進行刪除,即在它的右子樹中尋找中序下的第一個結點(關鍵碼最小),用它的值填補到被刪除節點中,再來處理該結點的刪除問題當我們在左右子樹都不為空的情況下進行刪除,刪除該節點會破壞樹的結構,因此用替罪羊的方法來解決,實際刪除的過程還是上面的兩種情況,這裡還是用到了搜尋二元樹的性質public void remove(Node parent,Node cur) { if(cur.left == null) { if(cur == root) { root = cur.right; }else if(cur == parent.left) { parent.left = cur.right; }else { parent.right = cur.right; } }else if(cur.right == null) { if(cur == root) { root = cur.left; }else if(cur == parent.left) { parent.left = cur.left; }else { parent.right = cur.left; } }else { Node targetParent = cur; Node target = cur.right; while (target.left != null) { targetParent = target; target = target.left; } cur.val = target.val; if(target == targetParent.left) { targetParent.left = target.right; }else { targetParent.right = target.right; } } } public void removeKey(int key) { if(root == null) { return; } Node cur = root; Node parent = null; while (cur != null) { if(cur.val == key) { remove(parent,cur); return; }else if(cur.val < key){ parent = cur; cur = cur.right; }else { parent = cur; cur = cur.left; } } }⑤效能分析
public class TextDemo { public static class Node { public int val; public Node left; public Node right; public Node (int val) { this.val = val; } } public Node root; /** * 查找 * @param key */ public Node search(int key) { Node cur = root; while (cur != null) { if(cur.val == key) { return cur; }else if(cur.val < key) { cur = cur.right; }else { cur = cur.left; } } return null; } /** * * @param key * @return */ public boolean insert(int key) { Node node = new Node(key); if(root == null) { root = node; return true; } Node cur = root; Node parent = null; while(cur != null) { if(cur.val == key) { return false; }else if(cur.val < key) { parent = cur; cur = cur.right; }else { parent = cur; cur = cur.left; } } //parent if(parent.val > key) { parent.left = node; }else { parent.right = node; } return true; } public void remove(Node parent,Node cur) { if(cur.left == null) { if(cur == root) { root = cur.right; }else if(cur == parent.left) { parent.left = cur.right; }else { parent.right = cur.right; } }else if(cur.right == null) { if(cur == root) { root = cur.left; }else if(cur == parent.left) { parent.left = cur.left; }else { parent.right = cur.left; } }else { Node targetParent = cur; Node target = cur.right; while (target.left != null) { targetParent = target; target = target.left; } cur.val = target.val; if(target == targetParent.left) { targetParent.left = target.right; }else { targetParent.right = target.right; } } } public void removeKey(int key) { if(root == null) { return; } Node cur = root; Node parent = null; while (cur != null) { if(cur.val == key) { remove(parent,cur); return; }else if(cur.val < key){ parent = cur; cur = cur.right; }else { parent = cur; cur = cur.left; } } } }
以上是Java二元搜尋樹的增、插、刪和創建範例詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!