搜尋
首頁後端開發Python教學Python 辦公室自動化之 PDF 的詳細操作

Python 办公自动化之 PDF 的详细操作

今天的具體內容將會從以下幾個小節展開:

  • #相關介紹
  • 批次分割
  • #批次合併
  • 擷取文字內容
  • 提起表格內容
  • 提起圖片內容
  • 轉換為PDF圖片
  • 新增浮水印
  • 加密與解碼

上述操作比較常用,也可以解決較多的辦公內容,以下直接開始本節內容:

1. 相關介紹

Python 操作PDF 會用到兩個函式庫,分別是:PyPDF2 和pdfplumber。

其中 PyPDF2 可以更好的讀取、寫入、分割、合併PDF文件,而 pdfplumber 可以更好的讀取 PDF 文件中內容和提取 PDF 中的表格。

對應的官網分別是:

  • PyPDF2:https://pythonhosted.org/PyPDF2/
  • pdfplumber:https://github.com/jsvine /pdfplumber

由於這兩個函式庫都不是Python 的標準函式庫,所以在使用前都需要另外安裝。

win r 後輸入cmd 開啟command 窗口,依序輸入如下指令進行安裝:

  • pip install PyPDF2
  • pip install pdfplumber

#安裝完成後顯示success 則表示安裝成功。

Python 办公自动化之 PDF 的详细操作

2. 批次分割

將一個完整的PDF 分割成幾個小的PDF,因為主要涉及到PDF 整體的操作,所以本小節需要用到PyPDF2 這個函式庫。

拆分的大概思路如下:

  • 讀取PDF 的整體資訊、總頁數等
  • 遍歷每一頁內容,以每個step 為間隔將PDF 存成每一個小的檔案區塊
  • 將小的檔案區塊重新儲存為新的PDF 檔案

需要注意的是,在分割的過程中,可以手動設定間隔,例如:每5頁儲存成一個小型的PDF 檔案。

拆分的代碼如下:

import os
from PyPDF2 import PdfFileWriter, PdfFileReader
def split_pdf(filename, filepath, save_dirpath, step=5):
 """
 拆分PDF为多个小的PDF文件,
 @param filename:文件名
 @param filepath:文件路径
 @param save_dirpath:保存小的PDF的文件路径
 @param step: 每step间隔的页面生成一个文件,例如step=5,表示0-4页、5-9页...为一个文件
 @return:
 """
 if not os.path.exists(save_dirpath):
 os.mkdir(save_dirpath)
 pdf_reader = PdfFileReader(filepath)
 # 读取每一页的数据
 pages = pdf_reader.getNumPages()
 for page in range(0, pages, step):
 pdf_writer = PdfFileWriter()
 # 拆分pdf,每 step 页的拆分为一个文件
 for index in range(page, page+step):
 if index < pages:
 pdf_writer.addPage(pdf_reader.getPage(index))
 # 保存拆分后的小文件
 save_path = os.path.join(save_dirpath, filename+str(int(page/step)+1)+'.pdf')
 print(save_path)
 with open(save_path, "wb") as out:
 pdf_writer.write(out)
 print("文件已成功拆分,保存路径为:"+save_dirpath)
split_pdf(filename, filepath, save_dirpath, step=5)

以「易方達中小型股混合型證券投資基金2020年中期報告」為例,整個PDF 文件一共46 頁,每5頁為間隔,最終生成了10個小的PDF 文件。

Python 办公自动化之 PDF 的详细操作

3. 批次合併

比起拆分來,合併的想法更簡單:

  • 確定要合併的檔案順序
  • 循環追加到一個檔案區塊中
  • 儲存成一個新的檔案

對應的程式碼比較簡單:

import os
from PyPDF2 import PdfFileReader, PdfFileWriter
def concat_pdf(filename, read_dirpath, save_filepath):
 """
 合并多个PDF文件
 @param filename:文件名
 @param read_dirpath:要合并的PDF目录
 @param save_filepath:合并后的PDF文件路径
 @return:
 """
 pdf_writer = PdfFileWriter()
 # 对文件名进行排序
 list_filename = os.listdir(read_dirpath)
 list_filename.sort(key=lambda x: int(x[:-4].replace(filename, "")))
 for filename in list_filename:
 print(filename)
 filepath = os.path.join(read_dirpath, filename)
 # 读取文件并获取文件的页数
 pdf_reader = PdfFileReader(filepath)
 pages = pdf_reader.getNumPages()
 # 逐页添加
 for page in range(pages):
 pdf_writer.addPage(pdf_reader.getPage(page))
 # 保存合并后的文件
 with open(save_filepath, "wb") as out:
 pdf_writer.write(out)
 print("文件已成功合并,保存路径为:"+save_filepath)
concat_pdf(filename, read_dirpath, save_filepath)

4 . 提取文字內容

涉及到特定的PDF 內容操作,本小節需要用到pdfplumber 這個庫。

在進行文字擷取的時候,主要用到 extract_text 這個函數。

具體程式碼如下:

import os
import pdfplumber
def extract_text_info(filepath):
 """
 提取PDF中的文字
 @param filepath:文件路径
 @return:
 """
 with pdfplumber.open(filepath) as pdf:
 # 获取第2页数据
 page = pdf.pages[1]
 print(page.extract_text())
# 提取文字内容
extract_text_info(filepath)

可以看到,直接透過下標即可定位到對應的頁碼,從而透過 extract_text 函數提取該也的所有文字。

而如果想要提取所有頁的文字,只需要改成:

with pdfplumber.open(filepath) as pdf:
# 获取全部数据
for page in pdf.pages
print(page.extract_text())

例如,提取「易方達中小盤混合型證券投資基金2020年中期報告」 第一頁的內容時,原始檔案是這樣的:

Python 办公自动化之 PDF 的详细操作

執行程式碼後提取出來是這樣的:

Python 办公自动化之 PDF 的详细操作

5. 提取表格內容

同樣的,本節是具體內容的操作,所以也需要用到pdfplumber 這個函式庫。

和提取文字十分類似的是,提取表格內容只是將 extract_text 函數換成了 extract_table 函數。

對應的程式碼如下:

import os
import pandas as pd
import pdfplumber
def extract_table_info(filepath):
 """
 提取PDF中的图表数据
 @param filepath:
 @return:
 """
 with pdfplumber.open(filepath) as pdf:
 # 获取第18页数据
 page = pdf.pages[17]
 # 如果一页有一个表格,设置表格的第一行为表头,其余为数据
 table_info = page.extract_table()
 df_table = pd.DataFrame(table_info[1:], columns=table_info[0])
 df_table.to_csv('dmeo.csv', index=False, encoding='gbk')
# 提取表格内容
extract_table_info(filepath)

上面程式碼可以取得到第 18 頁的第一個表格內容,並且將其儲存為 csv 檔案存在本機。

  • 但是,如果說第 18 頁有多個表格內容呢?

因為讀取的表格會被存成二維數組,而多個二維數組就組成一個三維數組。

遍歷這個三位數組,就可以得到該頁的每一個表格數據,對應的將 extract_table 函數 改成 extract_tables 即可。

具體代碼如下:

# 如果一页有多个表格,对应的数据是一个三维数组
tables_info = page.extract_tables()
for index in range(len(tables_info)):
 # 设置表格的第一行为表头,其余为数据
 df_table = pd.DataFrame(tables_info[index][1:], columns=tables_info[index][0])
 print(df_table)
 # df_table.to_csv('dmeo.csv', index=False, encoding='gbk')

以「易方達中小型股混合型證券投資基金2020年中期報告」 第xx 頁的第一個表格為例:

來源文件中的表格是這樣的:

Python 办公自动化之 PDF 的详细操作

提取並存入excel 之後的表格是這樣的:

Python 办公自动化之 PDF 的详细操作

6. 提取图片内容

提取 PDF 中的图片和将 PDF 转存为图片是不一样的(下一小节),需要区分开。

提取图片:顾名思义,就是将内容中的图片都提取出来;

转存为图片:则是将每一页的 PDF 内容存成一页一页的图片,下一小节会详细说明

转存为图片中,需要用到一个模块叫 fitz,fitz 的最新版 1.18.13,非最新版的在部分函数名称上存在差异,代码中会标记出来

使用 fitz 需要先安装 PyMuPDF 模块,安装方式如下:

  • pip install PyMuPDF

提取图片的整体逻辑如下:

  • 使用 fitz 打开文档,获取文档详细数据
  • 遍历每一个元素,通过正则找到图片的索引位置
  • 使用 Pixmap 将索引对应的元素生成图片
  • 通过 size 函数过滤较小的图片

实现的具体代码如下:

import os
import re
import fitz
def extract_pic_info(filepath, pic_dirpath):
 """
 提取PDF中的图片
 @param filepath:pdf文件路径
 @param pic_dirpath:要保存的图片目录路径
 @return:
 """
 if not os.path.exists(pic_dirpath):
 os.makedirs(pic_dirpath)
 # 使用正则表达式来查找图片
 check_XObject = r"/Type(?= */XObject)"
 check_Image = r"/Subtype(?= */Image)"
 img_count = 0
 """1. 打开pdf,打印相关信息"""
 pdf_info = fitz.open(filepath)
 # 1.16.8版本用法 xref_len = doc._getXrefLength()
 # 最新版本
 xref_len = pdf_info.xref_length()
 # 打印PDF的信息
 print("文件名:{}, 页数: {}, 对象: {}".format(filepath, len(pdf_info), xref_len-1))
 """2. 遍历PDF中的对象,遇到是图像才进行下一步,不然就continue"""
 for index in range(1, xref_len):
 # 1.16.8版本用法 text = doc._getXrefString(index)
 # 最新版本
 text = pdf_info.xref_object(index)
 is_XObject = re.search(check_XObject, text)
 is_Image = re.search(check_Image, text)
 # 如果不是对象也不是图片,则不操作
 if is_XObject or is_Image:
 img_count += 1
 # 根据索引生成图像
 pix = fitz.Pixmap(pdf_info, index)
 pic_filepath = os.path.join(pic_dirpath, 'img_' + str(img_count) + '.png')
 """pix.size 可以反映像素多少,简单的色素块该值较低,可以通过设置一个阈值过滤。以阈值 10000 为例过滤"""
 # if pix.size < 10000:
 # continue
 """三、 将图像存为png格式"""
 if pix.n >= 5:
 # 先转换CMYK
 pix = fitz.Pixmap(fitz.csRGB, pix)
 # 存为PNG
 pix.writePNG(pic_filepath)
# 提取图片内容
extract_pic_info(filepath, pic_dirpath)

以本节示例的“易方达中小盘混合型证券投资基金2020年中期报告” 中的图片为例,代码运行后提取的图片如下:

Python 办公自动化之 PDF 的详细操作

这个结果和文档中的共 1 张图片的结果符合。

7. 转换为图片

转换为照片比较简单,就是将一页页的 PDF 转换为一张张的图片。大致过程如下:

安装 pdf2image

首先需要安装对应的库,最新的 pdf2image 库版本应该是 1.14.0。

它的 github地址 为:https://github.com/Belval/pdf2image ,感兴趣的可以自行了解。

安装方式如下:

  • pip install pdf2image

安装组件

对于不同的平台,需要安装相应的组件,这里以 windows 平台和 mac 平台为例:

Windows 平台

对于 windows 用户需要安装 poppler for Windows,安装链接是:http://blog.alivate.com.au/poppler-windows/

另外,还需要添加环境变量, 将 bin 文件夹的路径添加到环境变量 PATH 中。

  • 注意这里配置之后需要重启一下电脑才会生效,不然会报错

Mac

对于 mac 用户,需要安装 poppler for Mac,具体可以参考这个链接:http://macappstore.org/poppler/

详细代码如下:

import os
from pdf2image import convert_from_path, convert_from_bytes
def convert_to_pic(filepath, pic_dirpath):
 """
 每一页的PDF转换成图片
 @param filepath:pdf文件路径
 @param pic_dirpath:图片目录路径
 @return:
 """
 print(filepath)
 if not os.path.exists(pic_dirpath):
 os.makedirs(pic_dirpath)
 images = convert_from_bytes(open(filepath, 'rb').read())
 # images = convert_from_path(filepath, dpi=200)
 for image in images:
 # 保存图片
 pic_filepath = os.path.join(pic_dirpath, 'img_'+str(images.index(image))+'.png')
 image.save(pic_filepath, 'PNG')
# PDF转换为图片
convert_to_pic(filepath, pic_dirpath)

以本节示例的“易方达中小盘混合型证券投资基金2020年中期报告” 中的图片为例,该文档共 46 页,保存后的 PDF 照片如下:

Python 办公自动化之 PDF 的详细操作

一共 46 张图片

8. 添加水印

添加水印后的效果如下:

Python 办公自动化之 PDF 的详细操作

在制作水印的时候,可以自定义水印内容、透明度、斜度、字间宽度等等,可操作性比较好。

前面专门写过一篇文章,讲的特别详细:Python快速给PDF文件添加自定义水印。

9. 文档加密与解密

你可能在打开部分 PDF 文件的时候,会弹出下面这个界面:

Python 办公自动化之 PDF 的详细操作

这种就是 PDF 文件被加密了,在打开的时候需要相应的密码才行。

本节所提到的也只是基于 PDF 文档的加密解密,而不是所谓的 PDF 密码破解。

在对 PDF 文件加密需要使用 encrypt 函数,对应的加密代码也比较简单:

import os
from PyPDF2 import PdfFileReader, PdfFileWriter
def encrypt_pdf(filepath, save_filepath, passwd='xiaoyi'):
 """
 PDF文档加密
 @param filepath:PDF文件路径
 @param save_filepath:加密后的文件保存路径
 @param passwd:密码
 @return:
 """
 pdf_reader = PdfFileReader(filepath)
 pdf_writer = PdfFileWriter()
 for page_index in range(pdf_reader.getNumPages()):
 pdf_writer.addPage(pdf_reader.getPage(page_index))
 # 添加密码
 pdf_writer.encrypt(passwd)
 with open(save_filepath, "wb") as out:
 pdf_writer.write(out)
# 文档加密
encrypt_pdf(filepath, save_filepath, passwd='xiaoyi')

代码执行成功后再次打开 PDF 文件则需要输入密码才行。

根据这个思路,破解 PDF 也可以通过暴力求解实现,例如:通过本地密码本一个个去尝试,或者根据数字+字母的密码形式循环尝试,最终成功打开的密码就是破解密码。

  • 上述破解方法耗时耗力,不建议尝试

另外,针对已经加密的 PDF 文件,也可以使用 decrypt 函数进行解密操作。

解密代码如下:

def decrypt_pdf(filepath, save_filepath, passwd='xiaoyi'):
 """
 解密 PDF 文档并且保存为未加密的 PDF
 @param filepath:PDF文件路径
 @param save_filepath:解密后的文件保存路径
 @param passwd:密码
 @return:
 """
 pdf_reader = PdfFileReader(filepath)
 # PDF文档解密
 pdf_reader.decrypt('xiaoyi')
 pdf_writer = PdfFileWriter()
 for page_index in range(pdf_reader.getNumPages()):
 pdf_writer.addPage(pdf_reader.getPage(page_index))
 with open(save_filepath, "wb") as out:
 pdf_writer.write(out)
# 文档解密
decrypt_pdf(filepath, save_filepath, passwd='xiaoyi')

解密完成后的 PDF 文档打开后不再需要输入密码,如需加密可再次执行加密代码。

以上就是 Python 操作 PDF 的全部内容,文中贴出的代码都已经测试过,可正常运行。

以上是Python 辦公室自動化之 PDF 的詳細操作的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分詞在景區評論分析中的準確性?如何提高jieba分詞在景區評論分析中的準確性?Apr 02, 2025 am 07:09 AM

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版