什麼是python生成器
產生器是一種特殊的迭代器,它內部也有__iter__
方法和__next__
方法,在終止生成器的時候,還是會拋StopIteration
異常以此來退出循環,只不過相比於迭代器,生成器還有特性會保存“中間值”,下次運行的時候,還會藉助這個“中間值”來操作。生成器的關鍵字是yield
,我們下面來寫一個最簡單的生成器。
#!/usr/bin/env python def printNums(): i = 0 while i<10: yield i i = i + 1 def main(): for i in printNums(): print(i) if __name__ == '__main__': main()
粗看程式碼,可能會覺著這個是個啥啊,為啥不直接用range
來生成,偏偏要用yield
,哎,不急,我們接著往下看為什麼需要生成器,或者說,生成器解決了什麼問題。
為什麼需要python生成器
在說明這個問題之前,我們先來寫一個需求,輸出 0——10000000 以內的數據,而後運行查看導出內存運行截圖。
呼叫python程式記憶體資訊輔助說明
這裡可以藉助python
的memory_profiler
模組來偵測程式記憶體的佔用情況。
安裝memory_profiler
庫:
pip3 install memory_profiler
使用方法很簡單,在需要偵測的函數或程式碼前加上@profile
裝飾器即可,例如:
@profile def main(): pass
生成.dat
檔案
##匯出圖示,可以使用mprof run
mprof plot --output=filenamepython案例代碼以下2個程序,都是輸出0—9999999之間的數據,不同的是,第一個程式是使用
range而後給
append進位
list中,第二個則是使用迭代器來產生該資料。
main.py程式
@profile def main(): data = list(range(10000000)) for i in data: pass if __name__ == '__main__': main()
main_2.py程式
def printNum(): i = 0 while i < 10000000: yield i i = i + 1 @profile def main(): for i in printNum(): pass if __name__ == '__main__': main()執行程式程式碼也有了,就可以按照上述來運行一下程序,並且導出內存信息
main.py運行記憶體圖
main_2.py 運行記憶體圖
yield語句涉及到了
python解釋權內部機制,所以很難查看其原始碼,很難取得其原理,不過我們可以利用
yield的暫停機制,來探尋一下生成器。
def testGenerator(): print("进入生成器") yield "pdudo" print("第一次输出") yield "juejin" print("第二次输出") def main(): xx = testGenerator() print(next(xx)) print(next(xx)) if __name__ == '__main__': main()運行後效果如下
python遇到
yield語句時,會記錄目前函數的運行狀態,並且暫停執行,將結果拋出。會持續等待下一次呼叫
__next__方法,該方法呼叫後,會恢復函數的運行,直到下一個
yield語句或函數結束,執行到最後沒有
yield函數可執行的時候,會拋
StopIteration來標誌生成器的結束。
python中,生成器除了寫在函數中,使用
yield返回之外,還可以直接使用生成器表達式,額。 。 。可能很抽象,但你看下面這段程式碼,你就明白了。
def printNums(): for i in [1,2,3,4,5]: yield i def main(): for i in printNums(): print(i) gener = (i for i in [1,2,3,4,5]) for i in gener: print(i) if __name__ == '__main__': main()其中,程式碼
(i for i in [1,2,3,4,5])就等同於
printNums函數,其型別都是生成器,我們可以使用
type列印出來看下。
以上是Python中的生成器是如何運作的?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1
好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

WebStorm Mac版
好用的JavaScript開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版