本文經AI新媒體量子位元(公眾號 ID: QbitAI)授權轉載,轉載請聯絡來源
國產對話機器人ChatGLM,和GPT-4誕生於同一天。
由智譜AI和清華大學KEG實驗室共同推出,開啟alpha內測版。
這個巧合讓智譜AI創始人兼CEO張鵬有一種說不清的複雜感覺。但看到科技被OpenAI做到這麼牛,這名被AI新進展轟炸麻了的科技老兵又猛然亢奮起來。
特別是在追GPT-4發表會直播時,他看一下螢幕裡的畫面,就埋頭笑一陣,再看一段,又咧嘴笑一會兒。
從成立起,張鵬帶隊的智譜AI就是大模型領域的一員,定下「讓機器像人一樣思考」的願景。
但這條路坎坷不斷。和幾乎所有做大模型的公司遇到的問題一樣,缺數據、缺機器,同時還缺錢。還好一路走來,有一些機構和公司提供無償支持。
去年8月,公司聯合一眾科研院所,開源的雙語預訓練大語言模型GLM-130B,能在準確性和惡意性指標上與GPT-3 175B (davinci) 接近或持平,也就是後來ChatGLM的基座。和ChatGLM同時開源的還有個62億參數版本ChatGLM-6B,千元單卡就可跑的那種。
除了GLM-130B,智譜另一個有名的產品是AI人才庫AMiner,學界大佬都在玩:
人肉測評。
先不說別的,幾輪測試下來就不難發現,ChatGLM身上有著包括ChatGPT、新必應在內都擁有的一項本領:一本正經胡說八道,包括但不限於在雞兔同籠問題中算出-33隻小雞崽。 對大多數把對話AI當「玩具」或辦公室助理的人來說,怎麼才能提高準確度,是格外被關注和重視的一點。 對話AI一本正經胡說八道這回事,可以修正嗎?又真的需要糾正嗎?「肯定也會有。但難道閉源就一定能解決安全問題嗎?我看未必。而且我相信世界上聰明人很多,競爭是促進整體產業和生態快速往前推進的優質催化劑。」
這裡的追趕是在陳述過程,建立在認為OpenAI研究方向是通往更遠目標路徑上的必經之路,但追趕上OpenAI並不是最終目的。
追趕上,不代表可以停下;追趕過程,不代表要原樣照搬矽谷模式,甚至可以發揮中國調動頂層設計集中力量辦大事的特色和優勢,才有可能去彌補發展速度上的差異。
雖然有2019年至今4年多的經驗,但智譜還不敢給什麼避坑指南。不過,智譜了解大致對的方向,這也是智譜透露的正在和CCF聊的共同想法——
大模型技術的誕生,是一個非常全面、複雜的系統化工程。
它不再是幾個聰明的腦袋在實驗室裡琢磨,掉幾根頭髮,做點實驗,發點paper就了事。除了原始的理論創新,還需要很強的工程實現和系統化能力,甚至還需要很好的產品能力。
就像ChatGPT這樣,選擇適合場景,設定並封裝一個上到80歲、下到8歲都能接觸使用的產品。
算力、演算法、數據,具體到背後都是人才,尤其是系統工程的從業者,重要程度遠大於往日。
基於這種認知,張鵬透露道,在大模型領域中加入知識系統(知識圖譜),讓二者像左右腦一樣系統工作,是智譜在研究和實驗當中的下一步。
GitHub最火雙語對話模型
ChatGLM整體參考了ChatGPT的設計想法。
也就是在千億雙語基座模型GLM-130B中註入程式碼預訓練,透過有監督微調等技術,實現人類意圖對齊(就是讓機器的回答符合人類價值、人類期望)。
背後1,300億參數的GLM-130B,由智譜和清華大學KEG實驗室共同研發。不同於BERT、GPT-3以及T5的架構,GLM-130B是一個包含多目標函數的自迴歸預訓練模型。
去年8月,GLM-130B對外發布,同時開源。 Standford報告中,它的表現在多項任務上可圈可點。
對開源的堅持,源自於智譜不想做通往AGI道路上孤獨的前行者。
這也是繼開源GLM-130B後,今年繼續開源ChatGLM-6B的原因。
ChatGLM-6B是模型的“縮小版”,62億參數大小,技術基底與ChatGLM相同,初具中文問答和對話功能。
持續開源,理由無外乎兩點。
一個是希望把預訓練模型的生態做大,吸引更多人投入大模型研究,解決現存的許多研究性問題;
#另一個是希望大模型作為基礎設施沉澱下來,以幫助產生更大的後續價值。
加入開源社群確實很吸引人。 ChatGLM內測的幾天內,ChatGLM-6B在GitHub上已有8.5k星標,一度躍升trending排行榜上的第一位。
從本次對話中,量子位元也從眼前這位從業者身上聽到這樣的聲音:
同樣bug頻出,但人們對OpenAI推出的ChatGPT,和對谷歌對話機器人Bard、百度文心一言的容忍程度差異明顯。
這既公平,又不公平。
從純技術的角度來說,評判標準不一,這是不公平所在;但谷歌、百度之類的大廠,佔據更多資源,大家天然覺得它們技術實力更強,做出更好的東西的可能性更高,期待值就更高。
「希望大家可以給更多的耐心,無論是對百度,對我們,還是其他機構。」
除了上述內容,在本次談話中,量子位也和張鵬具體聊了聊ChatGLM的體驗感受。
下面附上對話實錄。為了方便閱讀,我們在不改變原意的基礎上做了編輯整理。
對話實錄
量子位元:內測版本給自己打的標籤好像沒那麼“通用”,官網給它的適用領域框定了三個圈,教育、醫療和金融。
張鵬:這跟訓練資料沒什麼關係,主要是考慮到它的應用場景。
ChatGLM和ChatGPT類似,是一個對話模型。哪些應用領域天然更接近對話場景?像客服,像醫生問診,或例如線上金融服務。在這些場景下,更適合ChatGLM的技術去發揮作用。
量子位:但醫療領域,要看病的人對AI的態度還是比較謹慎的。
張鵬:肯定不能直接拿大模型往上懟啊! (笑)想要完全取代人類,還是要慎重。
現階段不是用它去代替人工作,更多的是輔助作用,給從業者建議來提升工作效率。
量子位元:我們把GLM-130B的論文連結丟給ChatGLM,讓它簡單概括一下主題,它 約照半天,結果說的根本不是這篇。
張鵬:ChatGLM的設定就是無法取得連結的東西。倒不是技術上的困難,而是系統邊界的問題,主要是從安全角度考慮,不希望它任意存取外部連結。
可以試試看把130B的論文文字copy下來丟給輸入框,一般不會瞎說。
量子位元:雞兔同籠我們也丟給它了,算出了-33隻雞。
張鵬:在數學處理、邏輯推理方面,它確實還有一定缺陷,做不到那麼好。內測說明裡我們其實寫了這件事。
量子位元:知乎有人做了測評,寫程式碼能力好像也普通。
張鵬:至於寫程式的能力,我覺得還好?不知道你們的測試方式是什麼。但具體要看跟誰比了,和ChatGPT比的話,ChatGLM本身在程式碼資料的投入可能就沒有那麼多。
就像ChatGLM和ChatGLM-6B比,後者只有6B(62億)的參數,整體能力,例如整體的邏輯性、回答時的幻覺和長度上,縮小版和原版的差距就很明顯。
但是「縮小版」能在普通電腦上部署,帶來的是更高的可用性和更低的門檻。
量子位元:它有個優點,對新資訊的掌握度不錯,知道推特現在的CEO是馬斯克,也知道何愷明3月10日回歸學界的事情-雖然不知道GPT- 4已經發布了,哈哈。
張鵬:我們做了一些特殊的技術處理。
量子位元:是什麼?
張鵬:具體細節就不展開講了。但對時間比較近的新訊息,是有辦法處理的。
量子位元:那透露下成本? GLM-130B訓練一次的成本還是有幾百萬,ChatGLM進行一輪問答的成本目前壓到什麼程度?
張鵬:我們大概測試估算了一下,和OpenAI倒數第二次公佈的成本差不多,比他們略低一些。
但OpenAI的最新報價縮減到原來的10%,只有0.002美元/750個單詞,這就比我們更低了。這個成本確實是很驚人的,估計他們做了模型壓縮、量化、最佳化等工作,否則不可能降到這麼低。
我們也在做相關的事情,期望能把成本壓下去。
量子位元:假以時日,能和搜尋成本一樣低嗎?
張鵬:什麼時候可以降到這麼低?我也不知道。還需要一點時間。
我之前看過每次搜尋價格平均成本的計算,其實與主營業務相關。例如搜尋引擎主要業務就是廣告,所以要用廣告總收入作為上限來計算成本。這樣計算的話,其實要考慮的不是消耗的成本,而是企業獲利收益的平衡點。
做模型推理需要的是AI算力,肯定比搜尋這類只用CPU算力的成本是要更高的。但大家也在努力吧,很多人提出一些想法,像是持續去做模型的壓縮量化。
甚至有人想把模型做一些轉化,讓它在CPU上跑,因為CPU更便宜,量更大,跑起來的話,成本下降就會很明顯。
量子位元:最後還想聊兩句人才方面的話題,現在大家都在搶大模型人才,智譜怕招不到人嗎?
張鵬:我們從清華KEG的技術計畫孵化出來,和各大學的關係一直都不錯。而且公司對年輕人來說氣氛比較open,75%的同事都是年輕人,我這種已經算老傢伙了。大模型人才現在確實奇貨可居,但我們還沒什麼招人的擔憂。
反過來,其實我們現在比較擔心被別人撬牆角(狗頭)。
以上是開源雙語對話模式在GitHub上熱度高漲,主張AI無需修正胡說八道的詳細內容。更多資訊請關注PHP中文網其他相關文章!

軟AI(被定義為AI系統,旨在使用近似推理,模式識別和靈活的決策執行特定的狹窄任務 - 試圖通過擁抱歧義來模仿類似人類的思維。 但是這對業務意味著什麼

答案很明確 - 只是雲計算需要向雲本地安全工具轉變,AI需要專門為AI獨特需求而設計的新型安全解決方案。 雲計算和安全課程的興起 在

企業家,並使用AI和Generative AI來改善其業務。同時,重要的是要記住生成的AI,就像所有技術一樣,都是一個放大器 - 使得偉大和平庸,更糟。嚴格的2024研究O

解鎖嵌入模型的力量:深入研究安德魯·NG的新課程 想像一個未來,機器可以完全準確地理解和回答您的問題。 這不是科幻小說;多虧了AI的進步,它已成為R

大型語言模型(LLM)和不可避免的幻覺問題 您可能使用了諸如Chatgpt,Claude和Gemini之類的AI模型。 這些都是大型語言模型(LLM)的示例,在大規模文本數據集上訓練的功能強大的AI系統

最近的研究表明,根據行業和搜索類型,AI概述可能導致有機交通下降15-64%。這種根本性的變化導致營銷人員重新考慮其在數字可見性方面的整個策略。 新的

埃隆大學(Elon University)想像的數字未來中心的最新報告對近300名全球技術專家進行了調查。由此產生的報告“ 2035年成為人類”,得出的結論是,大多數人擔心AI系統加深的採用


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3漢化版
中文版,非常好用

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),