克魯斯卡爾演算法
克魯斯卡爾演算法是一種用於求解最小生成樹問題的貪婪演算法。最小生成樹是一個連通無向圖中生成樹中邊權值和最小的生成樹。克魯斯卡爾演算法以邊權值從小到大的順序依序選擇邊,當所選的邊不會形成環時,將其加入生成樹。具體實作過程如下:
將所有邊依照邊權值從小到大排序。
依序選擇邊,如果選擇的邊的兩個端點不在同一個連通分量中,則將這條邊加入到最小生成樹中,並將兩個端點合併為同一個連通分量。
直到最小生成樹中包含了圖中的所有頂點為止。
演算法的優點在於只需要關注邊的權值,而與頂點的度數無關,因此在稠密圖中也能表現出較好的性能。同時,克魯斯卡爾演算法還具有較好的可擴展性,可以很方便地處理帶權圖中的最小生成森林問題。
執行流程
將所有的邊依照權值從小到大排序;
依序遍歷每條邊,如果這條邊連接的兩個節點不在同一個連通分量中,則將這條邊加入生成樹,並將這兩個節點合併為一個連通分量;
重複步驟2 直到所有的節點都在同一個連通分量中,此時產生的樹即為最小生成樹。
在實作過程中,通常會使用並查集來維護連通性,以提高效率。
程式碼實作
import java.util.*; public class KruskalAlgorithm { // 定义边的数据结构 class Edge implements Comparable<Edge> { int src, dest, weight; public int compareTo(Edge edge) { return this.weight - edge.weight; } } // 并查集数据结构 class Subset { int parent, rank; } int V, E; // V是顶点数,E是边数 Edge edge[]; // 存储边的数组 // 构造函数,初始化边和顶点数 KruskalAlgorithm(int v, int e) { V = v; E = e; edge = new Edge[E]; for (int i = 0; i < e; ++i) edge[i] = new Edge(); } // 查找父节点 int find(Subset subsets[], int i) { if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } // 合并两个子集 void union(Subset subsets[], int x, int y) { int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[xroot].rank > subsets[yroot].rank) subsets[yroot].parent = xroot; else { subsets[yroot].parent = xroot; subsets[xroot].rank++; } } // 执行克鲁斯卡尔算法 void kruskal() { Edge result[] = new Edge[V]; // 存储结果的数组 int e = 0; // 表示result数组中的下标 // 将边按照权重从小到大排序 Arrays.sort(edge); // 创建V个子集 Subset subsets[] = new Subset[V]; for (int i = 0; i < V; ++i) subsets[i] = new Subset(); // 初始化每个子集的父节点和秩 for (int v = 0; v < V; ++v) { subsets[v].parent = v; subsets[v].rank = 0; } // 取E-1条边 int i = 0; while (e < V - 1) { Edge next_edge = new Edge(); next_edge = edge[i++]; int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); // 如果两个节点不在同一个集合中,合并它们 if (x != y) { result[e++] = next_edge; union(subsets, x, y); } } // 打印结果 System.out.println("Following are the edges in the constructed MST"); for (i = 0; i < e; ++i){ System.out.println(result[i].src + " - " + result[i" - " + result[i].weight); return; } // 定义一个辅助函数,用于查找结点所在的集合 private int find(int parent[], int i) { if (parent[i] == -1) return i; return find(parent, parent[i]); } // 定义一个辅助函数,用于合并两个集合 private void union(int parent[], int x, int y) { int xset = find(parent, x); int yset = find(parent, y); parent[xset] = yset; } } }
函數使用Arrays類別的sort方法,依照邊的權重從小到大對邊進行排序。然後,函數依序遍歷排序後的邊,對於每條邊,使用find函數尋找其src和dest所在的集合的根節點。如果根節點不同,則表示這兩個集合不連通,可以合併,並將邊加入最小生成樹的結果陣列result。最後,函數遍歷最小生成樹的結果陣列result,並輸出每條邊的起點、終點和權重。
該實作中,使用了快速尋找集合的方法,即使用並查集來實現。每個結點都有一個parent數組,其中parent[i]表示結點i的父節點,如果parent[i] == -1,則說明結點i為根節點。在尋找結點所在的集合時,若目前結點的父節點為-1,則表示該結點為根節點,直接傳回;否則,遞迴尋找其父節點所在的集合。在合併兩個集合時,找到要合併的兩個集合的根節點,將其中一個根節點的父節點設為另一個根節點的索引,即將一個集合的根節點合併到另一個集合的根節點下。
這樣實作的克魯斯卡爾演算法時間複雜度為O(ElogE),其中E表示圖中的邊數,主要的時間開銷在於排序邊的過程。空間複雜度為O(V E),其中V表示圖中的頂點數,主要的空間開銷在於儲存邊和parent數組。
以上是Java程式碼實作克魯斯卡爾演算法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

JavadevelovermentIrelyPlatForm-DeTueTososeVeralFactors.1)JVMVariationsAffectPerformanceNandBehaviorAcroSsdifferentos.2)Nativelibrariesviajnijniiniininiinniinindrododerplatefform.3)

Java代碼在不同平台上運行時會有性能差異。 1)JVM的實現和優化策略不同,如OracleJDK和OpenJDK。 2)操作系統的特性,如內存管理和線程調度,也會影響性能。 3)可以通過選擇合適的JVM、調整JVM參數和代碼優化來提升性能。

Java'splatFormentenceHaslimitations不包括PerformanceOverhead,versionCompatibilityIsissues,挑戰WithnativelibraryIntegration,Platform-SpecificFeatures,andjvminstallation/jvminstallation/jvmintenance/jeartenance.therefactorscomplicatorscomplicatethe“ writeOnce”

PlatformIndependendecealLowsProgramStormonanyPlograwsStormanyPlatFormWithOutModification,而LileCross-PlatFormDevelopmentRequiredquiresMomePlatform-specificAdjustments.platFormIndependence,EneblesuniveByjava,EnablesuniversUniversAleversalexecutionbutmayCotutionButMayComproMisePerformance.cross.cross.cross-platformd

JITcompilationinJavaenhancesperformancewhilemaintainingplatformindependence.1)Itdynamicallytranslatesbytecodeintonativemachinecodeatruntime,optimizingfrequentlyusedcode.2)TheJVMremainsplatform-independent,allowingthesameJavaapplicationtorunondifferen

javaispopularforcross-platformdesktopapplicationsduetoits“ writeonce,runany where”哲學。 1)itusesbytiesebyTecodeThatrunsonAnyJvm-備用Platform.2)librarieslikeslikeslikeswingingandjavafxhelpcreatenative-lookingenative-lookinguisis.3)

在Java中編寫平台特定代碼的原因包括訪問特定操作系統功能、與特定硬件交互和優化性能。 1)使用JNA或JNI訪問Windows註冊表;2)通過JNI與Linux特定硬件驅動程序交互;3)通過JNI使用Metal優化macOS上的遊戲性能。儘管如此,編寫平台特定代碼會影響代碼的可移植性、增加複雜性、可能帶來性能開銷和安全風險。

Java將通過雲原生應用、多平台部署和跨語言互操作進一步提昇平台獨立性。 1)雲原生應用將使用GraalVM和Quarkus提升啟動速度。 2)Java將擴展到嵌入式設備、移動設備和量子計算機。 3)通過GraalVM,Java將與Python、JavaScript等語言無縫集成,增強跨語言互操作性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3 Linux新版
SublimeText3 Linux最新版

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中