搜尋
首頁科技週邊人工智慧ChatGPT備受歡迎,但10個生成式AI缺陷令人擔憂。

ChatGPT備受歡迎,但10個生成式AI缺陷令人擔憂。

經過科技人員幾十年的不懈努力,現實世界中的人工智慧現在終於達到了一個臨界點。 ChatGPT和DALL-E這樣的AI模型的驚人表現,讓許多人感受到越來越聰明的AI系統正在追趕人類。

生成式AI的功能如此多樣且獨特,以至於人們很難相信它們來自機器。但一旦奇蹟感消退,生成式AI的明星效應也會消失。 AI在一些應用中也顯示了其場景感知或常識的局限性, 如今也有很多人正在關注或擔心生成式AI的缺點或缺陷。 

以下是人們所擔心的生成式AI的10個缺點或缺陷。

1.抄襲內容

當研究人員創建DALL-E和ChatGPT等生成式AI模型時,這些實際上只是從訓練集中的數百萬個範例中建立的新模式。結果是從各種資料來源提取的剪貼合成的,而人類這種行為被稱為「抄襲」。

當然,人類也是透過模仿來學習的,但在某些情況下,這種抄襲並不可取,甚至違法。而生成式AI生成的內容則由大量文字組成,或多或少抄襲了一些內容。然而,有時其中涉及足夠的混合或合成,即使是大學教授也可能難以檢測到真實來源。無論怎樣,其產生的內容缺少的是獨特性。儘管它們看起來功能強大,但並不能生產出真正的創新產品。 

2.版權問題 

雖然抄襲是學校盡力避免的問題,但版權法適用於市場。當某人竊取他人的智慧財產權或工作成果時,那麼可能會被起訴,或被處以數百萬美元的罰款。但是AI系統呢?同樣的規則適用於它們嗎? 

版權是一個複雜的主題,生成式AI的法律地位將需要數年時間才能確定。但要記住的是,當AI開始取代人類的一些工作的時間,那麼就會有人根據版權法規提起訴訟。 

3. 無償取得人類的勞動

生成式AI引發的法律問題不僅僅是抄襲和侵犯版權,一些律師已經AI引發的道德發起訴訟。例如,一家製作繪圖程式的公司是否收集有關用戶繪圖行為的數據,然後將這些數據用於AI培訓目的?人類是否應該為這種創造性勞動的使用獲得補償?AI的成功很大程度上源於對數據的存取。那麼,產生資料的人類想要從中獲利會發生什麼事呢?那麼什麼是公平的?什麼是合法的? 

4.利用資訊而不創造知識 

AI擅長模仿人類需要數年才能發展出來的那種智慧。當一位人類學者介紹一位不知名的17世紀藝術家,或者藝術家用一種幾乎被遺忘的文藝復興時期的音調創作出新的音樂時,人們對他們具有高深的知識和技能感到欽佩,因為這需要多年的學習和練習。當AI只經過幾個月的訓練就能做同樣的事情時,其結果可能會非常精確和正確,但總是感覺缺少了什麼。 

訓練有素的AI系統機器透過獲取大量資訊來了解某一事物,甚至可以破解瑪雅象形文字。 AI似乎在模仿人類創造力中有趣和不可預測的一面,但它們並不能真正做到這一點。同時,不可預測性是創造性創新的驅動力。像時尚產業不僅沉迷於變化,而且被變化所定義。事實上,AI和人類都有各自擅長的領域。 

5.智能成長受限 

說到智能,AI本質上是機械的、基於規則的。一旦AI系統透過一組資料進行訓練,就會創建了一個模型,而這個模型並沒有真正改變。一些工程師和資料科學家設想,隨著時間的推移,逐步重新訓練AI模型,這樣AI就能學會適應。

但是,在大多數情況下,這個想法是創建一組複雜的神經元,以固定的形式編碼特定的知識。這可能適用於某些行業。 AI的危險在於,其智慧成長將永遠被其訓練資料的限制所困。當人類變得依賴生成式AI,以至於無法再為訓練模型提供新的材料時,將會發生什麼? 

#6.隱私和安全性有待提高 

AI的訓練需要大量數據,人類並不總是那麼確定神經網路的結果是什麼。如果AI從訓練資料中洩露個人資訊怎麼辦?更糟糕的是,控制AI要困難得多,因為它們的設計非常靈活。關係資料庫可以限制對具有個人資訊的特定表的存取。然而,AI可以透過數十種不同的方式進行查詢。

網路攻擊者很快就會學會如何以正確的方式提出正確的問題,以獲取他們想要的敏感資料。假設網路攻擊者鎖定了某一特定設施的緯度和經度,可能會詢問AI系統那個地點的確切時間,而盡職的AI系統可能會回答這個問題。因此,如何訓練AI保護隱私資料也是一件困難的事。

7.產生偏見

即使是早期的大型主機程式設計師也理解電腦問題的核心,他們創造了「垃圾輸入,垃圾輸出」(GIGO)這一概念。 AI的許多問題來自於糟糕的訓練資料。如果資料集不準確或有偏見,就會反映在其輸出結果中。 

生成式AI的核心硬體由邏輯驅動,但建造和訓練機器的人類卻不是。偏見和錯誤已經被證明可以進入AI模型。也許有人使用了有偏見的數據來創建模型,也許他們只是覆蓋了防止AI回答特定的熱點問題,也許他們輸入了一些固定的答案,而這些將讓AI系統產生偏見。

8. AI也會犯錯 

人們很容易原諒AI模型犯的錯誤,因為它們在許多其他事情上都做得很好,只是許多錯誤很難預測,因為AI的思考方式與人類不同。例如,許多使用文字轉圖像功能的用戶發現,AI在相當簡單的事情上都會犯錯,例如計數。

人類從小學就開始學習基本的算術,然後用各種各樣的方式使用這項技能。例如請10歲的孩子畫一隻章魚,他通常會確定它有8條腿。當涉及數學的抽象和場景應用時,目前版本的AI模型往往會陷入困境。如果模型建構者對這個錯誤給予一定的關注,這種情況很容易改變,但還會有其他錯誤。機器智能不同於人類智能,這意味著機器犯的錯誤也會有所不同。

9.欺騙人類

有時,人類往往會在沒有意識到錯誤的情況下被AI系統所欺騙。例如,如果AI告訴人類,英國國王亨利八世殺死了他妻子,他們通常會相信,因為他們也可能不了解這段歷史。人們往往假設AI提供的答案是真實且正確的。 

對於生成式AI的使用者來說,最棘手的問題是知道AI系統何時出錯。人們認為,機器不會像人類那樣說謊,這讓它們變得更加危險。 AI系統可以寫出一些完全準確的數據,然後轉向猜測,甚至變成謊言,而人類通常不知道發生了什麼。二手車經銷商或撲克玩家往往知道他們什麼時候在撒謊,而且大多數人都會說出在哪裡撒謊,但AI不能做到這一點。 

10.無限的複製性

數位內容具有無限的複製性,這讓許多圍繞稀缺性建立的AI模型不堪重負。生成式AI將進一步打破這些模式。生成式AI將會讓一些作家和藝術家失業,它也顛覆了人們遵循的許多經濟規則。

當廣告和內容可以不斷地重新組合和更新時,廣告支援的內容還會有效嗎?網路的免費部分是否會陷入「機器人點擊網頁廣告」的世界,而所有這些都是由生成式AI產生的並且無限複製的? 

無限豐富性可能會破壞數位經濟。例如,如果不可替代的代幣可以被複製,人們還會繼續為它們付費嗎?如果藝術創作如此簡單,它還會受到尊重嗎?它還會是獨特的嗎?當一切都被視為理所當然時,一切都會失去價值嗎?

不要試圖自己回答這些問題,可以向生成式AI尋求一個有趣而奇怪的答案。

以上是ChatGPT備受歡迎,但10個生成式AI缺陷令人擔憂。的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
讓我們跳舞:結構化運動以微調我們的人類神經網讓我們跳舞:結構化運動以微調我們的人類神經網Apr 27, 2025 am 11:09 AM

科學家已經廣泛研究了人類和更簡單的神經網絡(如秀麗隱桿線蟲中的神經網絡),以了解其功能。 但是,出現了一個關鍵問題:我們如何使自己的神經網絡與新穎的AI一起有效地工作

新的Google洩漏揭示了雙子AI的訂閱更改新的Google洩漏揭示了雙子AI的訂閱更改Apr 27, 2025 am 11:08 AM

Google的雙子座高級:新的訂閱層即將到來 目前,訪問Gemini Advanced需要$ 19.99/月Google One AI高級計劃。 但是,Android Authority報告暗示了即將發生的變化。 最新的Google P中的代碼

數據分析加速度如何求解AI的隱藏瓶頸數據分析加速度如何求解AI的隱藏瓶頸Apr 27, 2025 am 11:07 AM

儘管圍繞高級AI功能炒作,但企業AI部署中潛伏的巨大挑戰:數據處理瓶頸。首席執行官慶祝AI的進步時,工程師努力應對緩慢的查詢時間,管道超載,一個

Markitdown MCP可以將任何文檔轉換為Markdowns!Markitdown MCP可以將任何文檔轉換為Markdowns!Apr 27, 2025 am 09:47 AM

處理文檔不再只是在您的AI項目中打開文件,而是將混亂變成清晰度。諸如PDF,PowerPoints和Word之類的文檔以各種形狀和大小淹沒了我們的工作流程。檢索結構化

如何使用Google ADK進行建築代理? - 分析Vidhya如何使用Google ADK進行建築代理? - 分析VidhyaApr 27, 2025 am 09:42 AM

利用Google的代理開發套件(ADK)的力量創建具有現實世界功能的智能代理!該教程通過使用ADK來構建對話代理,並支持Gemini和GPT等各種語言模型。 w

在LLM上使用SLM進行有效解決問題-Analytics Vidhya在LLM上使用SLM進行有效解決問題-Analytics VidhyaApr 27, 2025 am 09:27 AM

摘要: 小型語言模型 (SLM) 專為效率而設計。在資源匱乏、實時性和隱私敏感的環境中,它們比大型語言模型 (LLM) 更勝一籌。 最適合專注型任務,尤其是在領域特異性、控制性和可解釋性比通用知識或創造力更重要的情況下。 SLM 並非 LLMs 的替代品,但在精度、速度和成本效益至關重要時,它們是理想之選。 技術幫助我們用更少的資源取得更多成就。它一直是推動者,而非驅動者。從蒸汽機時代到互聯網泡沫時期,技術的威力在於它幫助我們解決問題的程度。人工智能 (AI) 以及最近的生成式 AI 也不例

如何將Google Gemini模型用於計算機視覺任務? - 分析Vidhya如何將Google Gemini模型用於計算機視覺任務? - 分析VidhyaApr 27, 2025 am 09:26 AM

利用Google雙子座的力量用於計算機視覺:綜合指南 領先的AI聊天機器人Google Gemini擴展了其功能,超越了對話,以涵蓋強大的計算機視覺功能。 本指南詳細說明瞭如何利用

Gemini 2.0 Flash vs O4-Mini:Google可以比OpenAI更好嗎?Gemini 2.0 Flash vs O4-Mini:Google可以比OpenAI更好嗎?Apr 27, 2025 am 09:20 AM

2025年的AI景觀正在充滿活力,而Google的Gemini 2.0 Flash和Openai的O4-Mini的到來。 這些尖端的車型分開了幾週,具有可比的高級功能和令人印象深刻的基準分數。這個深入的比較

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),