1.字串反轉
使用Python切片反轉字串:
# Reversing a string using slicing my_string = "ABCDE" reversed_string = my_string[::-1] print(reversed_string) # Output # EDCBA
2.每個單字的第一個字母大寫
使用title函數方法:
my_string = "my name is chaitanya baweja" # using the title() function of string class new_string = my_string.title() print(new_string) # Output # My Name Is Chaitanya Baweja
3. 字串尋找唯一元素
使用集合的概念尋找字串的唯一元素:
my_string = "aavvccccddddeee" # converting the string to a set temp_set = set(my_string) # stitching set into a string using join new_string = ''.join(temp_set) print(new_string) # output # cdvae
4.重複列印字串和清單n次
你可以使用乘法符號(*)列印字串或列表多次:
n = 3 # number of repetitions my_string = "abcd" my_list = [1,2,3] print(my_string*n) # abcdabcdabcd print(my_list*n) # [1,2,3,1,2,3,1,2,3]
5.列表產生
# Multiplying each element in a list by 2 original_list = [1,2,3,4] new_list = [2*x for x in original_list] print(new_list) # [2,4,6,8]
6.變數交換
a = 1 b = 2 a, b = b, a print(a) # 2 print(b) # 1
7.字串拆分為子字串清單
使用.split()函數:
string_1 = "My name is Chaitanya Baweja" string_2 = "sample/ string 2" # default separator ' ' print(string_1.split()) # ['My', 'name', 'is', 'Chaitanya', 'Baweja'] # defining separator as '/' print(string_2.split('/')) # ['sample', ' string 2']
8.多個字串組合為一個字串
list_of_strings = ['My', 'name', 'is', 'Chaitanya', 'Baweja'] # Using join with the comma separator print(','.join(list_of_strings)) # Output # My,name,is,Chaitanya,Baweja
# 9.偵測字串是否為回文
my_string = "abcba" if my_string == my_string[::-1]: print("palindrome") else: print("not palindrome") # Output # palindrome
10.統計列表中元素的次數
# finding frequency of each element in a list from collections import Counter my_list = ['a','a','b','b','b','c','d','d','d','d','d'] count = Counter(my_list) # defining a counter object print(count) # Of all elements # Counter({'d': 5, 'b': 3, 'a': 2, 'c': 1}) print(count['b']) # of individual element # 3 print(count.most_common(1)) # most frequent element # [('d', 5)]
11.判斷兩個字串是否為Anagrams
Anagrams的意義在兩個單字中,每個英文單字(不含大小寫)出現的次數相同,使用Counter類別判斷兩個字串是否為Anagrams。
from collections import Counter str_1, str_2, str_3 = "acbde", "abced", "abcda" cnt_1, cnt_2, cnt_3 = Counter(str_1), Counter(str_2), Counter(str_3) if cnt_1 == cnt_2: print('1 and 2 anagram') if cnt_1 == cnt_3: print('1 and 3 anagram') # output # 1 and 2 anagram
12. 使用try-except-else-block模組
except取得例外處理:
a, b = 1,0 try: print(a/b) # exception raised when b is 0 except ZeroDivisionError: print("division by zero") else: print("no exceptions raised") finally: print("Run this always") # output # division by zero # Run this always
13. 使用枚舉函數得到key/value對
my_list = ['a', 'b', 'c', 'd', 'e'] for index, value in enumerate(my_list): print('{0}: {1}'.format(index, value)) # 0: a # 1: b # 2: c # 3: d # 4: e
14.檢查物件的記憶體使用量
import sys num = 21 print(sys.getsizeof(num)) # In Python 2, 24 # In Python 3, 28
15.合併字典
dict_1 = {'apple': 9, 'banana': 6} dict_2 = {'banana': 4, 'orange': 8} combined_dict = {**dict_1, **dict_2} print(combined_dict) # Output # {'apple': 9, 'banana': 4, 'orange': 8}
16.計算執行一段程式碼所花費的時間
使用time類別計算執行一段程式碼所花費的時間:
import time start_time = time.time() # Code to check follows for i in range(10**5): a, b = 1,2 c = a+ b # Code to check ends end_time = time.time() time_taken_in_micro = (end_time- start_time)*(10**6) print(time_taken_in_micro) # output # 18770.217895507812
17.清單展開
from iteration_utilities import deepflatten # if you only have one depth nested_list, use this def flatten(l): return [item for sublist in l for item in sublist] l = [[1,2,3],[3]] print(flatten(l)) # [1, 2, 3, 3] # if you don't know how deep the list is nested l = [[1,2,3],[4,[5],[6,7]],[8,[9,[10]]]] print(list(deepflatten(l, depth=3))) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
18. 清單取樣
import random my_list = ['a', 'b', 'c', 'd', 'e'] num_samples = 2 samples = random.sample(my_list,num_samples) print(samples) # [ 'a', 'e'] this will have any 2 random values
19.數字化
#將整數轉換成數字清單:
num = 123456 # using map list_of_digits = list(map(int, str(num))) print(list_of_digits) # [1, 2, 3, 4, 5, 6] # using list comprehension list_of_digits = [int(x) for x in str(num)] print(list_of_digits) # [1, 2, 3, 4, 5, 6]
20.檢查清單元素的唯一性
檢查清單中每個元素是否為唯一的:
def unique(l): if len(l)==len(set(l)): print("All elements are unique") else: print("List has duplicates") unique([1,2,3,4]) # All elements are unique unique([1,1,2,3]) # List has duplicates
以上是Python程式設計常用的技巧有哪些?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Dreamweaver CS6
視覺化網頁開發工具

WebStorm Mac版
好用的JavaScript開發工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

記事本++7.3.1
好用且免費的程式碼編輯器