近年來,在 Transformer 的推動下,機器學習正在經歷復興。在過去五年中,用於自然語言處理、電腦視覺以及其他領域的神經架構在很大程度上已被 transformer 所佔據。
不過還有許多圖像級生成模型仍然不受這一趨勢的影響,例如過去一年擴散模型在圖像生成方面取得了驚人的成果,幾乎所有這些模型都使用卷積U-Net 作為主幹。這有點令人驚訝!在過去的幾年中,深度學習的大事件一直是跨領域的 Transformer 的主導地位。 U-Net 或卷積是否有什麼特別之處使它們在擴散模型中表現得如此出色?
將 U-Net 主幹網路首次引入擴散模型的研究可追溯到 Ho 等人,這種設計模式繼承了自回歸生成模型 PixelCNN ,只是稍微進行了一些改動。而 PixelCNN 由卷積層組成,其包含許多 ResNet 的區塊。其與標準的 U-Net 相比,PixelCNN 附加的空間自註意力塊成為 transformer 中的基本元件。不同於其他人的研究,Dhariwal 和 Nichol 等人消除了 U-Net 的幾種架構選擇,例如使用自適應歸一化層為卷積層注入條件資訊和通道計數。
本文中來自UC 柏克萊的William Peebles 以及紐約大學的謝賽寧撰文《 Scalable Diffusion Models with Transformers 》,目標是揭開擴散模型中架構選擇的意義,並為未來的生成模型研究提供經驗基線。該研究表明,U-Net 歸納偏壓對擴散模型的性能不是至關重要的,並且可以輕鬆地用標準設計(如 transformer)取代。
這項發現表明,擴散模型可以從架構統一趨勢中受益,例如,擴散模型可以繼承其他領域的最佳實踐和訓練方法,保留這些模型的可擴展性、穩健性和效率等有利特性。標準化架構也將為跨領域研究開啟新的可能性。
- 論文網址:https://arxiv.org/pdf/2212.09748.pdf
- #專案網址:https://github.com/facebookresearch/DiT
- 論文首頁:https:// www.wpeebles.com/DiT
該研究專注於一類新的基於Transformer 的擴散模型:Diffusion Transformers(簡稱DiTs)。 DiTs 遵循 Vision Transformers (ViTs) 的最佳實踐,有一些小但重要的調整。 DiT 已被證明比傳統的捲積網路(例如 ResNet )具有更有效地擴展性。
具體而言,本文研究了 Transformer 在網路複雜度與樣本品質方面的擴展行為。研究表明,透過在潛在擴散模型 (LDM) 框架下建立 DiT 設計空間並對其進行基準測試,其中擴散模型在 VAE 的潛在空間內進行訓練,可以成功地用 transformer 取代 U-Net 主幹。本文進一步表明 DiT 是擴散模型的可擴展架構:網路複雜性(由 Gflops 測量)與樣本品質(由 FID 測量)之間存在很強的相關性。透過簡單地擴展 DiT 並訓練具有高容量主幹(118.6 Gflops)的 LDM,可以在類別條件 256 × 256 ImageNet 產生基準上實現 2.27 FID 的最新結果。
Diffusion Transformers
DiTs 是一種用於擴散模型的新架構,目標是盡可能忠實於標準 transformer 架構,以保留其可擴展性。 DiT 保留了 ViT 的許多最佳實踐,圖 3 顯示了完整 DiT 體系架構。
DiT 的輸入為空間表示 z(對於 256 × 256 × 3 影像,z 的形狀為 32 × 32 × 4)。 DiT 的第一層是 patchify,該層透過將每個 patch 線性嵌入到輸入中,以此將空間輸入轉換為一個 T token 序列。 patchify 之後,本文將標準的基於 ViT 頻率的位置嵌入應用於所有輸入 token。
patchify 所建立的 token T 的數量由 patch 大小超參數 p 決定。如圖 4 所示,將 p 減半將使 T 翻四倍,因此至少能使 transformer Gflops 翻四倍。本文將 p = 2,4,8 加入 DiT 設計空間。
DiT 區塊設計:在 patchify 之後,輸入 token 由一系列 transformer 區塊處理。除了雜訊影像輸入之外,擴散模型有時還會處理額外的條件資訊,例如雜訊時間步長 t、類標籤 c、自然語言等。本文探討了四種以不同方式處理條件輸入的 transformer 塊變體。這些設計對標準 ViT 塊設計進行了微小但重要的修改。所有模組的設計如圖 3 所示。
本文嘗試了四個因模型深度和寬度而異的配置:DiT-S、DiT-B、DiT-L 和 DiT-XL。這些模型配置範圍從 33M 到 675M 參數,Gflops 從 0.4 到 119 。
實驗
研究者訓練了四個最高Gflop 的DiT-XL/2 模型,每個模型使用不同的block 設計—in-context(119.4 Gflops)、cross-attention(137.6Gflops)、adaptive layer norm(adaLN,118.6Gflops)或adaLN-zero(118.6Gflops)。然後在訓練過程中測量 FID,圖 5 為結果。
擴充模型大小和 patch 大小。圖 2(左)給出了每個模型的 Gflops 和它們在 400K 訓練迭代時的 FID 概況。可以發現,增加模型大小和減少 patch 大小會對擴散模型產生相當大的改進。
圖 6(上)展示了 FID 是如何隨著模型大小的增加和 patch 大小保持不變而變化的。在四種設定中,透過使 Transformer 更深、更寬,訓練的所有階段都獲得了 FID 的明顯提升。同樣,圖 6(底部)展示了 patch 大小減少和模型大小保持不變時的 FID。研究者再次觀察到,在整個訓練過程中,透過簡單地擴大 DiT 處理的 token 數量,並保持參數的大致固定,FID 會得到相當大的改善。
圖8 中展示了FID-50K 在400K 訓練步數下與模型Gflops 的對比:
#SOTA 擴散模型256×256 ImageNet。在擴展分析之後,研究者繼續訓練最高 Gflop 模型 DiT-XL/2,步數為 7M。圖 1 展示了該模型的樣本,並與類別條件產生 SOTA 模型進行比較,表 2 中展示了結果。
當使用無分類器指導時,DiT-XL/2 優於先前所有的擴散模型,將先前由LDM 實現的3.60 的最佳FID-50K 降至2.27。如圖2(右)所示,相對於LDM-4(103.6 Gflops)這樣的潛在空間U-Net 模型來說,DiT-XL/2(118.6 Gflops)計算效率高得多,也比ADM(1120 Gflops )或ADM-U(742 Gflops)這樣的像素空間U-Net 模型效率高很多。
表 3 展示了與 SOTA 方法的比較。 XL/2 在這解析度下再次勝過先前的所有擴散模型,將 ADM 先前取得的 3.85 的最佳 FID 提高到 3.04。
更多研究細節,可參考原論文。
以上是從U-Net到DiT:Transformer技術在統治擴散模型的應用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

經常使用“ AI-Ready勞動力”一詞,但是在供應鏈行業中確實意味著什麼? 供應鏈管理協會(ASCM)首席執行官安倍·埃什肯納齊(Abe Eshkenazi)表示,它表示能夠評論家的專業人員

分散的AI革命正在悄悄地獲得動力。 本週五在德克薩斯州奧斯汀,Bittensor最終遊戲峰會標誌著一個關鍵時刻,將分散的AI(DEAI)從理論轉變為實際應用。 與閃閃發光的廣告不同

企業AI面臨數據集成挑戰 企業AI的應用面臨一項重大挑戰:構建能夠通過持續學習業務數據來保持準確性和實用性的系統。 NeMo微服務通過創建Nvidia所描述的“數據飛輪”來解決這個問題,允許AI系統通過持續接觸企業信息和用戶互動來保持相關性。 這個新推出的工具包包含五個關鍵微服務: NeMo Customizer 處理大型語言模型的微調,具有更高的訓練吞吐量。 NeMo Evaluator 提供針對自定義基準的AI模型簡化評估。 NeMo Guardrails 實施安全控制,以保持合規性和適當的

AI:藝術與設計的未來畫卷 人工智能(AI)正以前所未有的方式改變藝術與設計領域,其影響已不僅限於業餘愛好者,更深刻地波及專業人士。 AI生成的藝術作品和設計方案正在迅速取代傳統的素材圖片和許多交易性設計活動中的設計師,例如廣告、社交媒體圖片生成和網頁設計。 然而,專業藝術家和設計師也發現AI的實用價值。他們將AI作為輔助工具,探索新的美學可能性,融合不同的風格,創造新穎的視覺效果。 AI幫助藝術家和設計師自動化重複性任務,提出不同的設計元素並提供創意輸入。 AI支持風格遷移,即將一種圖像的風格應用

Zoom最初以其視頻會議平台而聞名,它通過創新使用Agentic AI來引領工作場所革命。 最近與Zoom的CTO XD黃的對話揭示了該公司雄心勃勃的願景。 定義代理AI 黃d

AI會徹底改變教育嗎? 這個問題是促使教育者和利益相關者的認真反思。 AI融入教育既提出了機遇和挑戰。 正如科技Edvocate的馬修·林奇(Matthew Lynch)所指出的那樣

美國科學研究和技術發展或將面臨挑戰,這或許是由於預算削減導致的。據《自然》雜誌報導,2025年1月至3月期間,美國科學家申請海外工作的數量比2024年同期增加了32%。此前一項民意調查顯示,75%的受訪研究人員正在考慮前往歐洲和加拿大尋找工作。 過去幾個月,數百項NIH和NSF的撥款被終止,NIH今年的新撥款減少了約23億美元,下降幅度接近三分之一。洩露的預算提案顯示,特朗普政府正在考慮大幅削減科學機構的預算,削減幅度可能高達50%。 基礎研究領域的動盪也影響了美國的一大優勢:吸引海外人才。 35

Openai推出了強大的GPT-4.1系列:一個專為現實世界應用設計的三種高級語言模型家族。 這種巨大的飛躍提供了更快的響應時間,增強的理解和大幅降低了成本


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能