求最小的K個數
設計一個演算法,找出陣列中最小的k個數。以任意順序傳回這k個數均可。
#排序(冒泡/選擇)
想法
1,冒泡排序是每執行一次,就會確定最終位置,執行K次後,就可以得到結果,時間複雜度為O(n * k),當k2,選擇排序每執行依次,就會透過確定一個最大的或最小的放在一端,透過選擇排序,執行K次就可以得到最大的K個數了。時間複雜度時O(N * K)。 程式碼實作//冒泡排序 public static int[] topKByBubble(int[] arr, int k) { int[] ret = new int[k]; if (k == 0 || arr.length == 0) { return ret; } for (int i = 0; i < k; i++) { for (int j = arr.length - 1; j < i; j--) { if (arr[j] > arr[j + 1]) { swap(arr, j, j + 1); } } ret[i] = arr[i]; } return ret; } //选择排序 public static int[] topKBySelect(int[] arr, int k) { int[] ret = new int[k]; for (int i = 0; i < k; i++) { int maxIndex = i; int maxNum = arr[maxIndex]; for (int j = i + 1; j < arr.length; j++) { if (arr[j] > maxNum) { maxIndex = j; maxNum = arr[j]; } } if (maxIndex != i) { swap(arr, maxIndex, i); } ret[i] = arr[i]; } return ret; } public static void swap(int[] arr, int a, int b) { int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; }
public static int[] topKByPartition(int[] arr, int k){ if(arr.length == 0 || k <= 0){ return new int[0]; } return quickSort(arr,0,arr.length-1,k); } //快速排序 public static int[] quickSort(int[] arr, int low, int high, int k){ int n = arr.length; int pivotIndex = partition(arr, low, high); if(pivotIndex == k-1){ return Arrays.copyOfRange(arr,0,k); }else if(pivotIndex > k-1){ return quickSort(arr,low,pivotIndex-1,k); }else { return quickSort(arr,pivotIndex+1,high,k); } } public static int partition(int[] arr, int low, int high){ if(high - low == 0){ return low; } int pivot = arr[high]; int left = low; int right = high-1; while (left < right){ while (left < right && arr[left] > pivot){ left++; } while (left < right && arr[right] < pivot){ right--; } if(left < right){ swap(arr,left,right); }else { break; } } swap(arr,high,left); return left; } public static void swap(int[] arr,int a, int b){ int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; }方法三######利用堆疊#####想法#### ##1,建立一個最大堆######2,遍歷原始數組,元素入隊,當堆的大小為K時,只需要將堆頂元素於下一個元素比較,如果大於堆頂元素,則將堆頂元素刪除,將該元素插入堆中,直到遍歷完所有元素######3,將queue儲存的K個數出隊######時間複雜度:為O(N *logK)######程式碼實作###
public class TopK { public int[] smallestK(int[] arr, int k) { int[] ret = new int[k]; if(k==0 || arr.length==0){ return ret; } // 1,构建一个最大堆 // JDK的优先级队列是最小堆, 就要用到我们比较器 Queue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o2 - o1; } }); //2,遍历原数组,进行入队 for(int value:arr){ if(queue.size() < k){ queue.offer(value); }else{ if(value < queue.peek()){ queue.poll(); queue.offer(value); } } } //3,将queue中存储的K个元素出队 for(int i = 0;i < k;i++){ ret[i] = queue.poll(); } return ret; } }
以上是如何使用Java解決Top-K問題的詳細內容。更多資訊請關注PHP中文網其他相關文章!