搜尋
首頁後端開發Python教學如何在chatGPT Python API中啟用上下文管理?

如何在chatGPT Python API中啟用上下文管理?

Apr 21, 2023 pm 07:58 PM
pythonapichatgpt

官方案例:

# Note: you need to be using OpenAI Python v0.27.0 for the code below to work
import openai
 
openai.ChatCompletion.create(
  model="gpt-3.5-turbo",
  messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who won the world series in 2020?"},
        {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
        {"role": "user", "content": "Where was it played?"}
    ]
)

雖然已經給出了格式,但是沒有很詳細的說明,可能對於高階開發者一看就懂了,但是我還是想以更口水的方式講解一下這個上下文管理。

先看一下我一個簡單的程式碼(還沒有啟用上下文管理):

import openai
 
openai.api_key = "你的sk-key"
 
msg = [{"role": "user", "content": "你好chatGPT"}]
 
# 结构化数据并进行提交
completion = openai.ChatCompletion.create(
                # max_tokens = inf # 默认inf 最大令牌数
                presence_penalty = 1, # 惩罚机制,-2.0 到 2.0之间,默认0,数值越小提交的重复令牌数越多,从而能更清楚文本意思
                frequency_penalty = 1, # 意义和值基本同上,默认0,主要为频率
                temperature = 1.0,  # 温度 0-2之间,默认1  调整回复的精确度使用
                n = 1,  # 默认条数1
                user = ids,    # 用户ID,用于机器人区分不同用户避免多用户时出现混淆
                model = "gpt-3.5-turbo",    # 这里注意openai官方有很多个模型
                messages = msg
            )
 
value = completion.choices[0].message.content    # chatGPT返回的数据

這是一個最基本的結構,其中參數model和messages是必須要有的兩個形參。

加入上下文管理的程式碼:

import openai
 
openai.api_key = "你的sk-key"
 
msg = [{"role": "system", "content": "你的名字叫玖河AI,你是一个插件,你的开发者是玖河."},
        {"role": "user", "content": "你好chatGPT"},
        {"role": "assistant", "content": "您好,有什么需要我帮忙的问题吗?"},
        {"role": "user", "content": "我的名字叫高启强,我的妹妹叫高启兰,我们是兄妹关系。记住了吗?"}
        {"role": "assistant", "content": "好的,您叫高启强,您的妹妹叫高启兰,是亲兄妹关系。谢谢您提供信息让我更了解你们~"},
        {"role": "user", "content": "你现在在哪里?"},
        {"role": "assistant", "content": "作为一款智能Ai助手,我并没有实际的位置。我只是在云端中运行,在等待用户输入指令时保持睡眠状态。"},
        {"role": "user", "content": "我的妹妹是谁?"},
        {"role": "assistant", "content": "您之前告诉我,您的妹妹叫高启兰。"},
        {"role": "user", "content": "你的名字叫什么?"},
        {"role": "assistant", "content": "我的名字叫玖河AI是一个叫玖河的开发者开发的插件"}
        ]
 
# 结构化数据并进行提交
completion = openai.ChatCompletion.create(
                # max_tokens = inf # 默认inf 最大令牌数
                presence_penalty = 1, # 惩罚机制,-2.0 到 2.0之间,默认0,数值越小提交的重复令牌数越多,从而能更清楚文本意思
                frequency_penalty = 1, # 意义和值基本同上,默认0,主要为频率
                temperature = 1.0,  # 温度 0-2之间,默认1  调整回复的精确度使用
                n = 1,  # 默认条数1
                user = ids,    # 用户ID,用于机器人区分不同用户避免多用户时出现混淆
                model = "gpt-3.5-turbo",    # 这里注意openai官方有很多个模型
                messages = msg
            )
 
value = completion.choices[0].message.content    # chatGPT返回的数据

下方啟用上下文管理的資料結構和沒有啟用的資料結構略有不同:

① system 代表系統設定(也就是告訴chatGPT他的角色)

② user 表示用戶

③ assistant 表示GPT的回覆

有幾個點要跟大家說一下,避免踩坑!

一、msg數據的儲存建議使用資料庫形式進行儲存,優點是能持久數據,並且調取數據的時候也非常方便,因為我剛開始只想用json來儲存,但是折騰了很久還是放棄了,缺點是不方便儲存和調取,因為你需要考慮到不同的用戶他們下面的會話是不一樣的。

二、要注意的是,提交的資料結構順序必須是從上到下的資料結構,不然chatGPT會混淆錯亂,system可以沒有,如果你想讓它一直保持這個設定的話,那在每次提交的時候在第一個列表元素中加入system的資料就可以。

三、還有一個重要的點:提交的這些數據都會計算進tokens裡麵包括chatGPT回复的時候(最多4096個tokens),如果你想讓上下文管理能記憶更多的語料,那麼在提交資料的時候就盡可能的增加你們之間對話的內容(同時會更快的消耗你的tokens)。

四、截止2023年3月14日前:chatGPT的會員價格為20美元/月 ,tokens按量收費。通俗的說就是想手機卡一樣,每個月有月租,通話另外計費。 chatGPT Plus會員的好處就是速度能更快,並且穩定,白嫖版的也能用,就是速度會慢一些而且不穩定容易掛掉。

以上是如何在chatGPT Python API中啟用上下文管理?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:亿速云。如有侵權,請聯絡admin@php.cn刪除
Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python vs. C:內存管理和控制Python vs. C:內存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显著。1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科學計算的Python:詳細的外觀科學計算的Python:詳細的外觀Apr 19, 2025 am 12:15 AM

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python和C:找到合適的工具Python和C:找到合適的工具Apr 19, 2025 am 12:04 AM

選擇Python還是C 取決於項目需求:1)Python適合快速開發、數據科學和腳本編寫,因其簡潔語法和豐富庫;2)C 適用於需要高性能和底層控制的場景,如係統編程和遊戲開發,因其編譯型和手動內存管理。

數據科學和機器學習的Python數據科學和機器學習的PythonApr 19, 2025 am 12:02 AM

Python在數據科學和機器學習中的應用廣泛,主要依賴於其簡潔性和強大的庫生態系統。 1)Pandas用於數據處理和分析,2)Numpy提供高效的數值計算,3)Scikit-learn用於機器學習模型構建和優化,這些庫讓Python成為數據科學和機器學習的理想工具。

學習Python:2小時的每日學習是否足夠?學習Python:2小時的每日學習是否足夠?Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Web開發的Python:關鍵應用程序Web開發的Python:關鍵應用程序Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。