首頁 >Java >java教程 >如何使用Java API操作HDFS?

如何使用Java API操作HDFS?

王林
王林轉載
2023-04-19 14:28:131323瀏覽

1.遍歷目前目錄下所有檔案與資料夾

可以使用listStatus方法實現上述需求。
listStatus方法簽章如下

  /**
   * List the statuses of the files/directories in the given path if the path is
   * a directory.
   * 
   * @param f given path
   * @return the statuses of the files/directories in the given patch
   * @throws FileNotFoundException when the path does not exist;
   *         IOException see specific implementation
   */
  public abstract FileStatus[] listStatus(Path f) throws FileNotFoundException, 
                                                         IOException;

可以看出listStatus只需要傳入參數Path即可,傳回的是一個FileStatus的陣列。
而FileStatus包含有以下資訊

/** Interface that represents the client side information for a file.
 */
@InterfaceAudience.Public
@InterfaceStability.Stable
public class FileStatus implements Writable, Comparable {

  private Path path;
  private long length;
  private boolean isdir;
  private short block_replication;
  private long blocksize;
  private long modification_time;
  private long access_time;
  private FsPermission permission;
  private String owner;
  private String group;
  private Path symlink;
  ....

從FileStatus中不難看出,包含有檔案路徑,大小,是否是目錄,block_replication, blocksize…等等各種資訊。

import org.apache.hadoop.fs.{FileStatus, FileSystem, Path}
import org.apache.spark.sql.SparkSession
import org.apache.spark.{SparkConf, SparkContext}
import org.slf4j.LoggerFactory

object HdfsOperation {
	
	val logger = LoggerFactory.getLogger(this.getClass)
	
	def tree(sc: SparkContext, path: String) : Unit = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		val fsPath = new Path(path)
		val status = fs.listStatus(fsPath)
		for(filestatus:FileStatus <- status) {
			logger.error("getPermission is: {}", filestatus.getPermission)
			logger.error("getOwner is: {}", filestatus.getOwner)
			logger.error("getGroup is: {}", filestatus.getGroup)
			logger.error("getLen is: {}", filestatus.getLen)
			logger.error("getModificationTime is: {}", filestatus.getModificationTime)
			logger.error("getReplication is: {}", filestatus.getReplication)
			logger.error("getBlockSize is: {}", filestatus.getBlockSize)
			if (filestatus.isDirectory) {
				val dirpath = filestatus.getPath.toString
				logger.error("文件夹名字为: {}", dirpath)
				tree(sc, dirpath)
			} else {
				val fullname = filestatus.getPath.toString
				val filename = filestatus.getPath.getName
				logger.error("全部文件名为: {}", fullname)
				logger.error("文件名为: {}", filename)
			}
		}
	}
}

如果判斷fileStatus是資料夾,則遞歸呼叫tree方法,達到全部遍歷的目的。

2.遍歷所有檔案

上面的方法是遍歷所有檔案以及資料夾。如果只想遍歷文件,可以使用listFiles方法。

	def findFiles(sc: SparkContext, path: String) = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		val fsPath = new Path(path)
		val files = fs.listFiles(fsPath, true)
		while(files.hasNext) {
			val filestatus = files.next()
			val fullname = filestatus.getPath.toString
			val filename = filestatus.getPath.getName
			logger.error("全部文件名为: {}", fullname)
			logger.error("文件名为: {}", filename)
			logger.error("文件大小为: {}", filestatus.getLen)
		}
	}
  /**
   * List the statuses and block locations of the files in the given path.
   * 
   * If the path is a directory, 
   *   if recursive is false, returns files in the directory;
   *   if recursive is true, return files in the subtree rooted at the path.
   * If the path is a file, return the file&#39;s status and block locations.
   * 
   * @param f is the path
   * @param recursive if the subdirectories need to be traversed recursively
   *
   * @return an iterator that traverses statuses of the files
   *
   * @throws FileNotFoundException when the path does not exist;
   *         IOException see specific implementation
   */
  public RemoteIterator<LocatedFileStatus> listFiles(
      final Path f, final boolean recursive)
  throws FileNotFoundException, IOException {
  ...

從原始碼可以看出,listFiles 回傳一個可迭代的物件RemoteIteratorc9e85c60fcfb1f1d8c4d5e1d7b95ff0b,而listStatus回傳的是個陣列。同時,listFiles回傳的都是檔案。

3.建立資料夾

	def mkdirToHdfs(sc: SparkContext, path: String) = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		val result = fs.mkdirs(new Path(path))
		if (result) {
			logger.error("mkdirs already success!")
		} else {
			logger.error("mkdirs had failed!")
		}
	}

4.刪除資料夾

	def deleteOnHdfs(sc: SparkContext, path: String) = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		val result = fs.delete(new Path(path), true)
		if (result) {
			logger.error("delete already success!")
		} else {
			logger.error("delete had failed!")
		}
	}

5.上傳檔案

	def uploadToHdfs(sc: SparkContext, localPath: String, hdfsPath: String): Unit = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		fs.copyFromLocalFile(new Path(localPath), new Path(hdfsPath))
		fs.close()
	}

6.下載檔案

	def downloadFromHdfs(sc: SparkContext, localPath: String, hdfsPath: String) = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		fs.copyToLocalFile(new Path(hdfsPath), new Path(localPath))
		fs.close()
	}

以上是如何使用Java API操作HDFS?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:yisu.com。如有侵權,請聯絡admin@php.cn刪除