搜尋
首頁後端開發Python教學如何使用Python偵測並辨識車牌?

如何使用Python偵測並辨識車牌?

Apr 14, 2023 pm 12:34 PM
python識別車牌

譯者| 布加迪

審校| 孫淑娟

車牌偵測與辨識技術用途廣泛,可用於道路系統、無票停車場、車輛門禁等。這項技術結合了電腦視覺和人工智慧。

本文將使用Python建立一個車牌偵測和辨識程式。程式對輸入影像進行處理,偵測並識別車牌,最後顯示車牌字符,作為輸出內容。

一、建立Python環境

要輕鬆完成本教學,您需要熟悉Python基礎。應先創建程式環境。

在開始程式設計之前,您需要在環境中安裝幾個函式庫。開啟任何Python IDE,建立一個Python檔。在終端機上運行命令以安裝相應的庫。您應該在電腦上預先安裝Python PIP。

  • OpenCV-Python:您將使用這個函式庫對輸入影像進行預處理,並顯示各個輸出影像。 pip install OpenCV-Python
  • imutils:您將使用這個函式庫將原始輸入影像裁切成所需的寬度。 pip install imutils
  • pytesseract:您將使用這個庫提取車牌字符,並將它們轉換成字串。 pip install pytesseractpytesseract函式庫依賴Tesseract OCR引擎進行字元辨識。

二、如何在您的電腦上安裝Tesseract OCR?

Tesseract OCR是一種可以辨識語言字元的引擎。在使用pytesseract庫之前,您應該在電腦上安裝它。步驟如下:

1. 開啟任何基於Chrome的瀏覽器。

2. 下載Tesseract OCR安裝程式。

3. 執行安裝程序,像安裝其他程式一樣安裝它。

準備好環境並安裝tesseract OCR後,您就可以編寫程式了。

1.導入庫

首先導入在環境中安裝的庫。導入庫讓您可以在專案中呼叫和使用它們的函數。

  • import cv2
  • import imutils
  • import pytesseract

您需要以cv2形式導入OpenCV-Python庫。使用與安裝時相同的名稱匯入其他庫。

2.取得輸入

然後將pytesseract指向安裝Tesseract引擎的位置。使用cv2.imread函數將汽車影像作為輸入。將圖像名稱換成您正在使用的圖像的名稱。將圖像儲存在專案所在的同一個資料夾中,以方便操作。

pytesseract.pytesseract.tesseract_cmd = 'C:\Program Files\Tesseract-OCR\tesseract.exe'
original_image = cv2.imread('image3.jpeg')

您可以將下面的輸入圖像換成想要使用的圖像。

3.預處理輸入

將影像寬度調整為500像素,然後將影像轉換成灰階影像,因為canny邊緣偵測函數只適用於灰階影像。最後,呼叫bilateralFilter函數以降低影像雜訊。

original_image = imutils.resize(original_image, width=500 )
gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
gray_image = cv2.bilateralFilter(gray_image, 11, 17, 17)

4.在輸入端偵測車牌

#偵測車牌是確定汽車上有車牌字元的那​​部分的過程。

(1)執行邊緣偵測

#先呼叫cv2.Canny函數,該函數可自動偵測預處理影像上的邊緣。

edged_image = cv2.Canny(gray_image, 30,200)

我們將透過這些邊緣找到輪廓。

(2)尋找輪廓

#呼叫cv2.findContours函數,並傳遞邊緣圖像的副本。這個函數將檢測輪廓。使用cv2.drawContours函數,繪製原始影像上已偵測的輪廓。最後,輸出所有可見輪廓已繪製的原始影像。

contours, new = cv2.findContours(edged_image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
img1 = original_image.copy()
cv2.drawContours(img1, contours, -1, (0, 255, 0), 3)
cv2.imshow("img1", img1)

該程式繪製它在汽車圖像上找到的所有輪廓。

如何使用Python偵測並辨識車牌?

找到輪廓後,您需要對它們進行篩選,以確定最佳候選輪廓。

(3)篩選輪廓

#根據最小面積30對輪廓進行篩選。忽略小於這個面積的輪廓,因為它們不太可能是車牌輪廓。複製原始影像,在影像上繪製前30個輪廓。最後,顯示圖像。

contours = sorted(contours, key = cv2.contourArea, reverse = True)[:30]
# stores the license plate contour
screenCnt = None
img2 = original_image.copy()

# draws top 30 contours
cv2.drawContours(img2, contours, -1, (0, 255, 0), 3)
cv2.imshow("img2", img2)

現在輪廓數量比開始時要少。唯一繪製的輪廓是那些近似含有車牌的輪廓。

如何使用Python偵測並辨識車牌?

最後,您需要遍歷篩選的輪廓,確定哪一個是車牌。

(4)遍歷前30個輪廓

#建立遍歷輪廓的for迴圈。尋找有四個角的輪廓,確定其周長和座標。儲存含有車牌的輪廓的圖像。最後,在原始影像上繪製車牌輪廓並加以顯示。

count = 0
idx = 7

for c in contours:
# approximate the license plate contour
contour_perimeter = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.018 * contour_perimeter, True)

# Look for contours with 4 corners
if len(approx) == 4:
screenCnt = approx

# find the coordinates of the license plate contour
x, y, w, h = cv2.boundingRect(c)
new_img = original_image [ y: y + h, x: x + w]

# stores the new image
cv2.imwrite('./'+str(idx)+'.png',new_img)
idx += 1
break

# draws the license plate contour on original image
cv2.drawContours(original_image , [screenCnt], -1, (0, 255, 0), 3)
cv2.imshow("detected license plate", original_image )

循環之後,程式已辨識出含有車牌的那個輪廓。

#

如何使用Python偵測並辨識車牌?

5.识别检测到的车牌

识别车牌意味着读取已裁剪车牌图像上的字符。加载之前存储的车牌图像并显示它。然后,调用pytesseract.image_to_string函数,传递已裁剪的车牌图像。这个函数将图像中的字符转换成字符串。

# filename of the cropped license plate image
cropped_License_Plate = './7.png'
cv2.imshow("cropped license plate", cv2.imread(cropped_License_Plate))

# converts the license plate characters to string
text = pytesseract.image_to_string(cropped_License_Plate, lang='eng')

已裁剪的车牌如下所示。上面的字符将是您稍后在屏幕上输出的内容。

如何使用Python偵測並辨識車牌?

检测并识别车牌之后,您就可以显示输出了。

6.显示输出

这是最后一步。您将提取的文本输出到屏幕上。该文本含有车牌字符。

print("License plate is:", text)
cv2.waitKey(0)
cv2.destroyAllWindows()

程序的预期输出应该如下图所示:

如何使用Python偵測並辨識車牌?

车牌文本可以在终端上看到。

三、磨砺您的Python技能

用Python检测和识别车牌是一个有意思的项目。它有挑战性,所以应该会帮助您学到关于Python的更多知识。

说到编程,实际运用是掌握一门语言的关键。为了锻炼技能,您需要开发有意思的项目。

原文链接:https://www.makeuseof.com/python-car-license-plates-detect-and-recognize/

以上是如何使用Python偵測並辨識車牌?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)