譯者| 布加迪
審校| 孫淑娟
車牌偵測與辨識技術用途廣泛,可用於道路系統、無票停車場、車輛門禁等。這項技術結合了電腦視覺和人工智慧。
本文將使用Python建立一個車牌偵測和辨識程式。程式對輸入影像進行處理,偵測並識別車牌,最後顯示車牌字符,作為輸出內容。
要輕鬆完成本教學,您需要熟悉Python基礎。應先創建程式環境。
在開始程式設計之前,您需要在環境中安裝幾個函式庫。開啟任何Python IDE,建立一個Python檔。在終端機上運行命令以安裝相應的庫。您應該在電腦上預先安裝Python PIP。
Tesseract OCR是一種可以辨識語言字元的引擎。在使用pytesseract庫之前,您應該在電腦上安裝它。步驟如下:
1. 開啟任何基於Chrome的瀏覽器。
2. 下載Tesseract OCR安裝程式。
3. 執行安裝程序,像安裝其他程式一樣安裝它。
準備好環境並安裝tesseract OCR後,您就可以編寫程式了。
首先導入在環境中安裝的庫。導入庫讓您可以在專案中呼叫和使用它們的函數。
您需要以cv2形式導入OpenCV-Python庫。使用與安裝時相同的名稱匯入其他庫。
然後將pytesseract指向安裝Tesseract引擎的位置。使用cv2.imread函數將汽車影像作為輸入。將圖像名稱換成您正在使用的圖像的名稱。將圖像儲存在專案所在的同一個資料夾中,以方便操作。
pytesseract.pytesseract.tesseract_cmd = 'C:\Program Files\Tesseract-OCR\tesseract.exe' original_image = cv2.imread('image3.jpeg')
您可以將下面的輸入圖像換成想要使用的圖像。
將影像寬度調整為500像素,然後將影像轉換成灰階影像,因為canny邊緣偵測函數只適用於灰階影像。最後,呼叫bilateralFilter函數以降低影像雜訊。
original_image = imutils.resize(original_image, width=500 ) gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) gray_image = cv2.bilateralFilter(gray_image, 11, 17, 17)
#偵測車牌是確定汽車上有車牌字元的那部分的過程。
(1)執行邊緣偵測
#先呼叫cv2.Canny函數,該函數可自動偵測預處理影像上的邊緣。
edged_image = cv2.Canny(gray_image, 30,200)
我們將透過這些邊緣找到輪廓。
(2)尋找輪廓
#呼叫cv2.findContours函數,並傳遞邊緣圖像的副本。這個函數將檢測輪廓。使用cv2.drawContours函數,繪製原始影像上已偵測的輪廓。最後,輸出所有可見輪廓已繪製的原始影像。
contours, new = cv2.findContours(edged_image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) img1 = original_image.copy() cv2.drawContours(img1, contours, -1, (0, 255, 0), 3) cv2.imshow("img1", img1)
該程式繪製它在汽車圖像上找到的所有輪廓。
找到輪廓後,您需要對它們進行篩選,以確定最佳候選輪廓。
(3)篩選輪廓
#根據最小面積30對輪廓進行篩選。忽略小於這個面積的輪廓,因為它們不太可能是車牌輪廓。複製原始影像,在影像上繪製前30個輪廓。最後,顯示圖像。
contours = sorted(contours, key = cv2.contourArea, reverse = True)[:30] # stores the license plate contour screenCnt = None img2 = original_image.copy() # draws top 30 contours cv2.drawContours(img2, contours, -1, (0, 255, 0), 3) cv2.imshow("img2", img2)
現在輪廓數量比開始時要少。唯一繪製的輪廓是那些近似含有車牌的輪廓。
最後,您需要遍歷篩選的輪廓,確定哪一個是車牌。
(4)遍歷前30個輪廓
#建立遍歷輪廓的for迴圈。尋找有四個角的輪廓,確定其周長和座標。儲存含有車牌的輪廓的圖像。最後,在原始影像上繪製車牌輪廓並加以顯示。
count = 0 idx = 7 for c in contours: # approximate the license plate contour contour_perimeter = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.018 * contour_perimeter, True) # Look for contours with 4 corners if len(approx) == 4: screenCnt = approx # find the coordinates of the license plate contour x, y, w, h = cv2.boundingRect(c) new_img = original_image [ y: y + h, x: x + w] # stores the new image cv2.imwrite('./'+str(idx)+'.png',new_img) idx += 1 break # draws the license plate contour on original image cv2.drawContours(original_image , [screenCnt], -1, (0, 255, 0), 3) cv2.imshow("detected license plate", original_image )
循環之後,程式已辨識出含有車牌的那個輪廓。
#识别车牌意味着读取已裁剪车牌图像上的字符。加载之前存储的车牌图像并显示它。然后,调用pytesseract.image_to_string函数,传递已裁剪的车牌图像。这个函数将图像中的字符转换成字符串。
# filename of the cropped license plate image cropped_License_Plate = './7.png' cv2.imshow("cropped license plate", cv2.imread(cropped_License_Plate)) # converts the license plate characters to string text = pytesseract.image_to_string(cropped_License_Plate, lang='eng')
已裁剪的车牌如下所示。上面的字符将是您稍后在屏幕上输出的内容。
检测并识别车牌之后,您就可以显示输出了。
这是最后一步。您将提取的文本输出到屏幕上。该文本含有车牌字符。
print("License plate is:", text) cv2.waitKey(0) cv2.destroyAllWindows()
程序的预期输出应该如下图所示:
车牌文本可以在终端上看到。
用Python检测和识别车牌是一个有意思的项目。它有挑战性,所以应该会帮助您学到关于Python的更多知识。
说到编程,实际运用是掌握一门语言的关键。为了锻炼技能,您需要开发有意思的项目。
原文链接:https://www.makeuseof.com/python-car-license-plates-detect-and-recognize/
以上是如何使用Python偵測並辨識車牌?的詳細內容。更多資訊請關注PHP中文網其他相關文章!