為了簡單起見這裡將使用遞歸來創建樹節點,雖然遞歸不是一個完美的實現,但是對於解釋原理他是最直觀的。
首先導入庫
import pandas as pd import numpy as np import matplotlib.pyplot as plt
首先需要創建訓練數據,我們的數據將具有獨立變量(x)和一個相關的變量(y),並使用numpy在相關值中添加高斯噪聲,可以用數學表示為
這裡的 是噪聲。程式碼如下所示。
def f(x): mu, sigma = 0, 1.5 return -x**2 + x + 5 + np.random.normal(mu, sigma, 1) num_points = 300 np.random.seed(1) x = np.random.uniform(-2, 5, num_points) y = np.array( [f(i) for i in x] ) plt.scatter(x, y, s = 5)
回歸樹
在迴歸樹中是透過建立一個多個節點的樹來預測數值資料的。下圖展示了一個回歸樹的樹結構範例,其中每個節點都有其用於劃分資料的閾值。
給定一組數據,輸入值將透過相應的規格達到葉子節點。達到節點M的所有輸入值可以用X的子集表示。從數學上講,讓我們用一個函數來表達此情況,如果給定的輸入值達到節點M,則可以給出1個,否則為0。
找到分裂資料的閾值:透過在每個步驟中選擇2個連續點並計算其平均值來迭代訓練資料。計算的平均值將數據分為兩個的閾值。
首先讓我們考慮隨機閾值以演示任何給定的情況。
threshold = 1.5 low = np.take(y, np.where(x < threshold)) high = np.take(y, np.where(x > threshold)) plt.scatter(x, y, s = 5, label = 'Data') plt.plot([threshold]*2, [-16, 10], 'b--', label = 'Threshold line') plt.plot([-2, threshold], [low.mean()]*2, 'r--', label = 'Left child prediction line') plt.plot([threshold, 5], [high.mean()]*2, 'r--', label = 'Right child prediction line') plt.plot([-2, 5], [y.mean()]*2, 'g--', label = 'Node prediction line') plt.legend()
藍色垂直線表示單一閾值,我們假設它是任意兩點的平均值,並稍後將其用於劃分資料。
我們對這個問題的第一個預測是所有訓練資料(y軸)的平均值(綠色水平線)。而兩條紅線是要建立的子節點的預測。
很明顯這些平均值都不能很好地代表我們的數據,但它們的差異也是很明顯的:主節點預測(綠線)得到所有訓練數據的均值,我們將其分為2個子節點,這2個子節點有自己的預測(紅線)。與綠線相比這2個子節點更好地代表了它們對應的訓練資料。回歸樹就是將不斷地將資料分成2個部分-從每個節點建立2個子節點,直到達到給定的停止值(這是節點所能擁有的最小資料量)。它會提前停止樹的建造過程,我們稱之為預修剪樹。
為什麼會有早停的機制?如果我們要繼續進行分配直到節點只有一個值是,這創建一個過度擬合的方案,每個訓練資料都只能預測自己。
說明:當模型完成時,它不會使用根節點或任何中間節點來預測任何值;它將使用回歸樹的葉子(這將是樹的最後一個節點)進行預測。
為了得到最能代表給定閾值資料的閾值,我們使用殘差平方和。它可以在數學上定義為
讓我們看看這一步是如何運作的。
既然計算了閾值的SSR值,那麼可以採用具有最小SSR值的閾值。使用此閾值將訓練資料分為兩個(低和高部分),其中低部分將用於建立左子節點,高部分將用於建立右子節點。
def SSR(r, y): return np.sum( (r - y)**2 ) SSRs, thresholds = [], [] for i in range(len(x) - 1): threshold = x[i:i+2].mean() low = np.take(y, np.where(x < threshold)) high = np.take(y, np.where(x > threshold)) guess_low = low.mean() guess_high = high.mean() SSRs.append(SSR(low, guess_low) + SSR(high, guess_high)) thresholds.append(threshold) print('Minimum residual is: {:.2f}'.format(min(SSRs))) print('Corresponding threshold value is: {:.4f}'.format(thresholds[SSRs.index(min(SSRs))]))
在进入下一步之前,我将使用pandas创建一个df,并创建一个用于寻找最佳阈值的方法。所有这些步骤都可以在没有pandas的情况下完成,这里使用他是因为比较方便。
df = pd.DataFrame(zip(x, y.squeeze()), columns = ['x', 'y']) def find_threshold(df, plot = False): SSRs, thresholds = [], [] for i in range(len(df) - 1): threshold = df.x[i:i+2].mean() low = df[(df.x <= threshold)] high = df[(df.x > threshold)] guess_low = low.y.mean() guess_high = high.y.mean() SSRs.append(SSR(low.y.to_numpy(), guess_low) + SSR(high.y.to_numpy(), guess_high)) thresholds.append(threshold) if plot: plt.scatter(thresholds, SSRs, s = 3) plt.show() return thresholds[SSRs.index(min(SSRs))]
创建子节点
在将数据分成两个部分后就可以为低值和高值找到单独的阈值。需要注意的是这里要增加一个停止条件;因为对于每个节点,属于该节点的数据集中的点会变少,所以我们为每个节点定义了最小数据点数量。如果不这样做,每个节点将只使用一个训练值进行预测,会导致过拟合。
可以递归地创建节点,我们定义了一个名为TreeNode的类,它将存储节点应该存储的每一个值。使用这个类我们首先创建根,同时计算它的阈值和预测值。然后递归地创建它的子节点,其中每个子节点类都存储在父类的left或right属性中。
在下面的create_nodes方法中,首先将给定的df分成两部分。然后检查是否有足够的数据单独创建左右节点。如果(对于其中任何一个)有足够的数据点,我们计算阈值并使用它创建一个子节点,用这个新节点作为树再次调用create_nodes方法。
class TreeNode(): def __init__(self, threshold, pred): self.threshold = threshold self.pred = pred self.left = None self.right = None def create_nodes(tree, df, stop): low = df[df.x <= tree.threshold] high = df[df.x > tree.threshold] if len(low) > stop: threshold = find_threshold(low) tree.left = TreeNode(threshold, low.y.mean()) create_nodes(tree.left, low, stop) if len(high) > stop: threshold = find_threshold(high) tree.right = TreeNode(threshold, high.y.mean()) create_nodes(tree.right, high, stop) threshold = find_threshold(df) tree = TreeNode(threshold, df.y.mean()) create_nodes(tree, df, 5)
这个方法在第一棵树上进行了修改,因为它不需要返回任何东西。虽然递归函数通常不是这样写的(不返回),但因为不需要返回值,所以当没有激活if语句时,不做任何操作。
在完成后可以检查此树结构,查看它是否创建了一些可以拟合数据的节点。 这里将手动选择第一个节点及其对根阈值的预测。
plt.scatter(x, y, s = 0.5, label = 'Data') plt.plot([tree.threshold]*2, [-16, 10], 'r--', label = 'Root threshold') plt.plot([tree.right.threshold]*2, [-16, 10], 'g--', label = 'Right node threshold') plt.plot([tree.threshold, tree.right.threshold], [tree.right.left.pred]*2, 'g', label = 'Right node prediction') plt.plot([tree.left.threshold]*2, [-16, 10], 'm--', label = 'Left node threshold') plt.plot([tree.left.threshold, tree.threshold], [tree.left.right.pred]*2, 'm', label = 'Left node prediction') plt.plot([tree.left.left.threshold]*2, [-16, 10], 'k--', label = 'Second Left node threshold') plt.legend()
这里看到了两个预测:
- 第一个左节点对高值的预测(高于其阈值)
- 第一个右节点对低值(低于其阈值)的预测
这里我手动剪切了预测线的宽度,因为如果给定的x值达到了这些节点中的任何一个,则将以属于该节点的所有x值的平均值表示,这也意味着没有其他x值参与 在该节点的预测中(希望有意义)。
这种树形结构远不止两个节点那么简单,所以我们可以通过如下调用它的子节点来检查一个特定的叶子节点。
tree.left.right.left.left
这当然意味着这里有一个向下4个子结点长的分支,但它可以在树的另一个分支上深入得多。
预测
我们可以创建一个预测方法来预测任何给定的值。
def predict(x): curr_node = tree result = None while True: if x <= curr_node.threshold: if curr_node.left: curr_node = curr_node.left else: break elif x > curr_node.threshold: if curr_node.right: curr_node = curr_node.right else: break return curr_node.pred
预测方法做的是沿着树向下,通过比较我们的输入和每个叶子的阈值。如果输入值大于阈值,则转到右叶,如果小于阈值,则转到左叶,以此类推,直到到达任何底部叶子节点。然后使用该节点自身的预测值进行预测,并与其阈值进行最后的比较。
使用x = 3进行测试(在创建数据时,可以使用上面所写的函数计算实际值。-3**2+3+5 = -1,这是期望值),我们得到:
predict(3) # -1.23741
计算误差
这里用相对平方误差验证数据
def RSE(y, g): return sum(np.square(y - g)) / sum(np.square(y - 1 / len(y)*sum(y))) x_val = np.random.uniform(-2, 5, 50) y_val = np.array( [f(i) for i in x_val] ).squeeze() tr_preds = np.array( [predict(i) for i in df.x] ) val_preds = np.array( [predict(i) for i in x_val] ) print('Training error: {:.4f}'.format(RSE(df.y, tr_preds))) print('Validation error: {:.4f}'.format(RSE(y_val, val_preds)))
可以看到误差并不大,结果如下
概括的步骤
更深入的模型
一个更适合回归树模型的数据:因为我们的数据是多项式生成的数据,所以使用多项式回归模型可以更好地拟合。我们更换一下训练数据,把新函数设为
def f(x): mu, sigma = 0, 0.5 if x < 3: return 1 + np.random.normal(mu, sigma, 1) elif x >= 3 and x < 6: return 9 + np.random.normal(mu, sigma, 1) elif x >= 6: return 5 + np.random.normal(mu, sigma, 1) np.random.seed(1) x = np.random.uniform(0, 10, num_points) y = np.array( [f(i) for i in x] ) plt.scatter(x, y, s = 5)
在此数据集上运行了上面的所有相同过程,结果如下
比我们从多项式数据中获得的误差低。
最后共享一下上面动图的代码:
import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation #===================================================Create Data def f(x): mu, sigma = 0, 1.5 return -x**2 + x + 5 + np.random.normal(mu, sigma, 1) np.random.seed(1) x = np.random.uniform(-2, 5, 300) y = np.array( [f(i) for i in x] ) p = x.argsort() x = x[p] y = y[p] #===================================================Calculate Thresholds def SSR(r, y): #send numpy array return np.sum( (r - y)**2 ) SSRs, thresholds = [], [] for i in range(len(x) - 1): threshold = x[i:i+2].mean() low = np.take(y, np.where(x < threshold)) high = np.take(y, np.where(x > threshold)) guess_low = low.mean() guess_high = high.mean() SSRs.append(SSR(low, guess_low) + SSR(high, guess_high)) thresholds.append(threshold) #===================================================Animated Plot fig, (ax1, ax2) = plt.subplots(2,1, sharex = True) x_data, y_data = [], [] x_data2, y_data2 = [], [] ln, = ax1.plot([], [], 'r--') ln2, = ax2.plot(thresholds, SSRs, 'ro', markersize = 2) line = [ln, ln2] def init(): ax1.scatter(x, y, s = 3) ax1.title.set_text('Trying Different Thresholds') ax2.title.set_text('Threshold vs SSR') ax1.set_ylabel('y values') ax2.set_xlabel('Threshold') ax2.set_ylabel('SSR') return line def update(frame): x_data = [x[frame:frame+2].mean()] * 2 y_data = [min(y), max(y)] line[0].set_data(x_data, y_data) x_data2.append(thresholds[frame]) y_data2.append(SSRs[frame]) line[1].set_data(x_data2, y_data2) return line ani = FuncAnimation(fig, update, frames = 298, init_func = init, blit = True) plt.show()
以上是使用Python從頭開始手寫迴歸樹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3漢化版
中文版,非常好用

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

WebStorm Mac版
好用的JavaScript開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。