搜尋
首頁後端開發Python教學哪種Python循環方式最快?

眾所周知,Python 不是一種執行效率較高的語言。此外在任何語言中,循環都是一種非常消耗時間的操作。假如任一簡單的單步操作耗費的時間為 1 個單位,將此操作重複執行上萬次,最終耗費的時間也將增長上萬倍。

哪種Python循環方式最快?

while 和 for 是 Python 中常用的兩個實作迴圈的關鍵字,它們的運作效率其實是有差距的。例如下面的測試程式碼:

import timeit


def while_loop(n=100_000_000):
i = 0
s = 0
while i < n:
s += i
i += 1
return s


def for_loop(n=100_000_000):
s = 0
for i in range(n):
s += i
return s


def main():
print('while looptt', timeit.timeit(while_loop, number=1))
print('for looptt', timeit.timeit(for_loop, number=1))


if __name__ == '__main__':
main()
# => while loop 4.718853999860585
# => for loop 3.211570399813354

這是一個簡單的求和操作,計算從 1 到 n 之間所有自然數的總和。可以看到 for 循環相比 while 快 1.5 秒。

其中的差距主要在於兩者的機制不同。

在每次循環中,while 實際上比 for 多執行了兩步驟操作:邊界檢查和變數 i 的自增。即每進行一次循環,while 都會做一次邊界檢查 (while i

for 循環不需要執行邊界檢查和自增操作,沒有增加明確的 Python 程式碼(純 Python 程式碼效率低於底層的 C 程式碼)。當循環的次數夠多,就出現了明顯的效率差距。

可以再增加兩個函數,在 for 循環中加上不必要的邊界檢查和自增計算:

import timeit


def while_loop(n=100_000_000):
i = 0
s = 0
while i < n:
s += i
i += 1
return s


def for_loop(n=100_000_000):
s = 0
for i in range(n):
s += i
return s


def for_loop_with_inc(n=100_000_000):
s = 0
for i in range(n):
s += i
i += 1
return s


def for_loop_with_test(n=100_000_000):
s = 0
for i in range(n):
if i < n:
pass
s += i
return s


def main():
print('while looptt', timeit.timeit(while_loop, number=1))
print('for looptt', timeit.timeit(for_loop, number=1))
print('for loop with incrementtt',
timeit.timeit(for_loop_with_inc, number=1))
print('for loop with testtt', timeit.timeit(for_loop_with_test, number=1))


if __name__ == '__main__':
main()
# => while loop 4.718853999860585
# => for loop 3.211570399813354
# => for loop with increment4.602369500091299
# => for loop with test 4.18337869993411

可以看出,增加的邊界檢查和自增操作確實大大影響了 for 循環的執行效率。

前面提到過,Python 底層的解釋器和內建函數是用 C 語言實作的。而 C 語言的執行效率遠大於 Python。

對於上面的求等差數列總和的操作,藉助 Python 內建的 sum 函數,可以獲得遠大於 for 或 while 循環的執行效率。

import timeit


def while_loop(n=100_000_000):
i = 0
s = 0
while i < n:
s += i
i += 1
return s


def for_loop(n=100_000_000):
s = 0
for i in range(n):
s += i
return s


def sum_range(n=100_000_000):
return sum(range(n))


def main():
print('while looptt', timeit.timeit(while_loop, number=1))
print('for looptt', timeit.timeit(for_loop, number=1))
print('sum rangett', timeit.timeit(sum_range, number=1))


if __name__ == '__main__':
main()
# => while loop 4.718853999860585
# => for loop 3.211570399813354
# => sum range0.8658821999561042

以看到,使用內建函數 sum 替代循環之後,程式碼的執行效率實現了倍數的成長。

內建函數 sum 的累積作業其實也是一種循環,但它是由 C 語言實現,而 for 循環中的求和操作是由純 Python 程式碼 s = i 實現的。 C > Python。

再拓展一下思維。小時候都聽過童年高斯巧妙地計算 1 到 100 總和的故事。 1…100 總和等於 (1 100) * 50。這個計算方法同樣可以應用在上面的求和操作。

import timeit


def while_loop(n=100_000_000):
i = 0
s = 0
while i < n:
s += i
i += 1
return s


def for_loop(n=100_000_000):
s = 0
for i in range(n):
s += i
return s


def sum_range(n=100_000_000):
return sum(range(n))


def math_sum(n=100_000_000):
return (n * (n - 1)) // 2


def main():
print('while looptt', timeit.timeit(while_loop, number=1))
print('for looptt', timeit.timeit(for_loop, number=1))
print('sum rangett', timeit.timeit(sum_range, number=1))
print('math sumtt', timeit.timeit(math_sum, number=1))


if __name__ == '__main__':
main()
# => while loop 4.718853999860585
# => for loop 3.211570399813354
# => sum range0.8658821999561042
# => math sum 2.400018274784088e-06

最終 math sum 的執行時間約為 2.4e-6,縮短了數百萬倍。這裡的想法就是,既然循環的效率低,一段程式碼要重複執行上億次。

索性直接不要循環,透過數學公式,把上億次的循環操作變成只有一步操作。效率自然得到了空前的加強。

最後的結論(有點謎語人):

實現循環的最快方式—— —— ——就是不用循環

#對於Python 而言,則盡可能地使用內建函數,將循環中的純Python 程式碼降到最低。

以上是哪種Python循環方式最快?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分詞在景區評論分析中的準確性?如何提高jieba分詞在景區評論分析中的準確性?Apr 02, 2025 am 07:09 AM

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

如何使用正則表達式匹配到第一個閉合標籤就停止?如何使用正則表達式匹配到第一個閉合標籤就停止?Apr 02, 2025 am 07:06 AM

如何使用正則表達式匹配到第一個閉合標籤就停止?在處理HTML或其他標記語言時,常常需要使用正則表達式來�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具