DetectGPT的目的是確定一段文字是否由特定的llm生成,例如GPT-3。為了對段落 x 進行分類,DetectGPT 首先使用通用的預訓練模型(例如 T5)對段落 ~xi 產生較小的擾動。然後DetectGPT將原始樣本x的對數機率與每個擾動樣本~xi進行比較。如果平均對數比高,則樣本可能來自來源模型。
ChatGPT是一個熱門話題。人們正在討論是否可以偵測到一篇文章是由大型語言模型(LLM)產生的。 DetectGPT定義了一種新的基於曲率的準則,用於判斷是否從給定的LLM生成。 DetectGPT不需要訓練單獨的分類器,不需要收集真實或產生的段落的資料集,也不需要明確地為生成的文字加上浮水印。它只使用由感興趣的模型計算的對數機率和來自另一個通用預訓練語言模型(例如T5)的文章隨機擾動。
1、DetectGPT:隨機排列和假設
#識別並利用了機器產生的通道x~pθ(左)位於logp (x)的負曲率區域的趨勢,其中附近的樣本平均具有較低的模型對數機率。相較之下,人類書寫的文字x~preal(.)(右)傾向於不佔據具有明顯負對數機率曲率的區域。
DetectGPT基於一個假設,即來自來源模型pθ的樣本通常位於pθ對數機率函數的負曲率區域,這是人類文本不同的。如果我們對一段文字 x~pθ 應用小的擾動,產生 ~x,與人類編寫的文本相比,機器產生的樣本的數量 log pθ(x) - log pθ(~x) 應該相對較大。利用這個假設,首先考慮一個擾動函數 q(.|x),它給出了在 ~x 上的分佈,x 的略微修改版本具有相似的含義(通常考慮粗略的段落長度文本 x)。例如,q(.|x) 可能是簡單地要求人類重寫 x 的其中一個句子的結果,同時保留 x 的含義。使用擾動函數的概念,可以定義擾動差異d (x; pθ, q):
#因此,下面的假設4.1也就是:
如果q(.|x)是來自掩碼填充模型(如T5)的樣本而不是人類重寫,那麼假設4.1可以以自動的、可擴展的方式進行經驗檢驗。
2、DetectGPT:自動測試
#對一篇文章進行改寫後,模型產生的文章的對數機率(擾動差異)的平均下降總是高於人工書寫的文章
對於真實數據,使用了XSum資料集中的500篇新聞文章。當提示XSum中每篇文章的前30個令牌時,使用四個不同llm的輸出。使用T5-3B施加擾動,遮蔽隨機採樣的2個單字跨度,直到文章中15%的單字被掩蓋。上面公式(1)中的期望近似於T5中的100個樣本。
上述實驗結果表明,人寫文章和模型樣本的攝動差異分佈有顯著差異;模型樣本往往有較大的擾動差異。根據這些結果,就可以透過簡單地閾值擾動差異來偵測一段文字是否由模型p產生。
透過用於估計E~x q(.|x) log p (~x) 的觀測值的標準差對擾動差異進行歸一化提供了更好的檢測,通常將AUROC 增加0.020 左右, 所以在實驗中使用了擾動差異的歸一化版本。
DetectGPT 的偵測過程偽代碼
#擾動差異可能是有用的,它測量的是什麼還無法明確解釋,所以作者在下一節中使用曲率進行解釋。
3、將微擾差異解釋為曲率
擾動差異近似於候選段落附近對數機率函數局部曲率的度量,更具體地說,它與對數機率函數的Hessian矩陣的負跡成正比。
這一節內容比較多,這裡就不詳細解釋了,有興趣的可以看看原文論文,大概總結如下:
語意空間中的取樣確保所有樣本都保持在資料流形附近,因為如果隨機添加擾動標記,預計對數機率總是下降。所以可以將目標解釋為近似限制在資料流形上的曲率。
4、結果展示
零樣本機器產生文字偵測
#每個實驗使用150到500個範例進行評估。機器產生的文字是透過提示真實文字的前30個標記來產生的。使用AUROC)評估效能。
可以看到DetectGPT最大程度地提高了XSum故事的平均檢測精度(AUROC提高0.1 )和SQuAD維基百科上下文(AUROC提高0.05 )。
對於15種資料集和模型組合中的14種,DetectGPT提供了最準確的檢測效能,AUROC平均提高了0.06。
與有監督偵測器的比較
在真實文字和生成文字的大型資料集上訓練的有監督的機器生成文字偵測模型在分佈內(頂部行)文字上的表現與DetectGPT一樣好,甚至更好。零樣本方法適用於新領域(底部一行),如PubMed醫學文本和WMT16中的德語新聞資料。
來自每個資料集的200個樣本進行評估,監督偵測器對英語新聞等分佈內資料的偵測效能與DetectGPT相似,但在英文科學寫作的情況下,其表現明顯差於零樣本方法,而在德語寫作中則完全失敗。
DetectGPT偵測GPT-3的平均AUROC與專門為機器產生文字偵測訓練的監督模型相當。
從PubMedQA、XSum和writingprompt資料集中抽取了150個範例。將兩種預訓練的基於roberta的檢測器模型與DetectGPT和機率閾值基線進行了比較。 DetectGPT 可以提供與更強大的監督模型競爭的檢測。
機器產生文字偵測的變體
這部分是看偵測器是否可以偵測到手動編輯的機器產生文字。透過用 T5–3B 中的樣本替換文字的 5 個單字跨度來模擬人工修訂,直到 r% 的文字被替換。即使模型樣本中近四分之一的文字已被替換,DetectGPT 仍能將偵測 AUROC 保持在 0.8 以上。 DetectGPT 顯示了所有修訂等級的最強檢測效能。
以上是DetectGPT:使用機率曲率的零樣本機器產生文字偵測的詳細內容。更多資訊請關注PHP中文網其他相關文章!

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

在2021年1月,OpenAI宣布了两个新模型:DALL-E和CLIP。这两个模型都是多模态模型,以某种方式连接文本和图像。CLIP的全称是对比语言-图像预训练(ContrastiveLanguage-ImagePre-training),它是一种基于对比文本-图像对的预训练方法。为什么要介绍CLIP呢?因为目前火热的StableDiffusion并不是单一模型,而是由多个模型组成。其中一个关键组成部分是文本编码器,用于对用户的文本输入进行编码,而这个文本编码器就是CLIP模型中的文本编码器CL

核模型高斯过程(KMGPs)是一种复杂的工具,用于处理各种数据集的复杂性。它通过核函数扩展了传统高斯过程的概念。本文将详细讨论KMGPs的理论基础、实际应用和面临的挑战。核模型高斯过程是对传统高斯过程的一种扩展,用于机器学习和统计学。了解kmgp前,需掌握高斯过程基础知识,再理解核模型的作用。高斯过程(GPs)高斯过程是随机变量集合,有限个变量联合高斯分布,用于定义函数概率分布。高斯过程在机器学习中常用于回归和分类任务,可用于拟合数据的概率分布。高斯过程的一个重要特征是能够提供不确定性估计和预测

将数据集分解为训练集,可以帮助我们了解模型,这对于模型如何推广到新的看不见数据非常重要。 如果模型过度拟合可能无法很好地概括新的看不见的数据。因此也无法做出良好的预测。拥有适当的验证策略是成功创建良好预测,使用AI模型的业务价值的第一步,本文中就整理出一些常见的数据拆分策略。简单的训练、测试拆分将数据集分为训练和验证2个部分,并以80%的训练和20%的验证。 可以使用Scikit的随机采样来执行此操作。首先需要固定随机种子,否则无法比较获得相同的数据拆分,在调试时无法获得结果的复现。 如果数据集

AI视频模型Sora爆火之后,Meta、谷歌等大厂纷纷下场做研究,追赶OpenAI的步伐。最近,来自谷歌团队的研究人员提出了一种通用视频编码器——VideoPrism。它能够通过单一冻结模型,处理各种视频理解任务。图片论文地址:https://arxiv.org/pdf/2402.13217.pdf比如,VideoPrism能够将下面视频中吹蜡烛的人分类、定位出来。图片视频-文本检索,根据文本内容,可以检索出视频中相应的内容。图片再比如,描述下面视频——一个小女孩正在玩积木。还可以进行QA问答。

多任务学习(MTL)存在很多挑战,因为不同任务之间的梯度可能矛盾。为了利用任务之间的关联,作者引入了 Mod-Squad 模型,它是多个专家组成的模块化模型。模型可以灵活优化任务和专家的匹配,针对任务选择部分专家。模型让每一个专家只对应部分任务,每一个任务只对应部分专家,以此最大化利用任务之间的正向联系。Mod-Squad 整合了 Mixture of Expert (MoE) 层到 Vision Transformer 模型中,并引入了新的损失函数鼓励专家和任务之间的稀疏但强烈的依赖关系。此外

使用大型数据集训练大型深度神经网络 (DNN) 的问题是深度学习领域的主要挑战。 随着 DNN 和数据集规模的增加,训练这些模型的计算和内存需求也会增加。 这使得在计算资源有限的单台机器上训练这些模型变得困难甚至不可能。 使用大型数据集训练大型 DNN 的一些主要挑战包括:训练时间长:训练过程可能需要数周甚至数月才能完成,具体取决于模型的复杂性和数据集的大小。内存限制:大型 DNN 可能需要大量内存来存储训练期间的所有模型参数、梯度和中间激活。 这可能会导致内存不足错误并限制可在单台机器上训练的


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具