中斷一年後,由Montreal.AI和紐約大學名譽教授Gary Marcus組織的年度人工智慧辯論於上週五晚上回歸,與2020年一樣再次以線上會議形式召開。
今年的辯論——AI辯論3:AGI 辯論——重點關注通用人工智慧的概念,即能夠整合無數接近人類水平的推理能力的機器。
影片連結:https://www.youtube.com/watch?v=JGiLz_Jx9uI&t=7s
#這次討論共三個半小時,圍繞著與人工智慧相關的五個主題: 認知與神經科學、常識、架構、倫理與道德以及政策和貢獻。
除了眾多電腦科學領域的大牛外,還有計算神經科學家Konrad Kording等16位專家參與其中。
本文簡單總結了其中5位大佬的觀點,有興趣的讀者可以透過上面的連結觀看完整影片。
主持人:馬庫斯
作為著名的批評家,馬庫斯引用了自己在《紐約客》上的文章《「深度學習」是人工智慧發展的一場革命嗎? 》,再次對AI的發展潑了盆冷水。
馬庫斯表示,與李飛飛團隊成功發布ImageNet後人們對人工智慧長達十年的熱情浪潮相反,製造無所不能的機器的「願望」並沒有實現。
DeepMind神經科學家Dileep George
來自GoogleDeepMind的神經科學家Dileep George曾經提出過一個名為「先天性」的概念。
簡單來說,就是某些「內建」在人類思想中的想法。
那麼對人工智慧來說,我們應該更關注先天性嗎?
對此,George表示,任何一種從初始狀態到某種穩定狀態的成長和發展都涉及三個因素。
一是初始狀態下的內部結構,二是輸入的數據,三是通用的自然法則。
「事實證明,先天結構在我們發現的每個領域都發揮著非凡的作用。」
對於那些被認為是學習的典型例子,例如習得語言,一旦你開始拆解,你會發現數據幾乎不會對其產生影響。
自從人類出現以來,語言就沒有改變過,任何文化中的任何孩子都能掌握語言就證明了這一點。
George認為,語言將成為人工智慧的核心,從而讓我們有機會搞清楚,到底是什麼讓人類成為一個如此獨特的物種。
華盛頓大學教授Yejin Choi
華盛頓大學電腦科學教授Yejin Choi預測道,AI在未來幾年內的表現,將會越來越驚人。
但是,由於我們並不知道網路的深度,它們將繼續在對抗性和角落案例上犯錯。
「對機器來說語言和智力的暗物質,可能就是常識。」
##當然,這裡所說的暗物質,是對人類來說容易但對機器來說很難的東西。
LSTM之父Jürgen Schmidhuber
馬庫斯表示,我們現在可以從大型語言模型中獲得大量的知識,但實際上這種範式需要被轉換。因為語言模型實際上被「剝奪」了多種類型的輸入。
瑞士人工智慧實驗室IDSIA主任、LSTM之父Jürgen Schmidhuber回應稱,「我們今天討論的大部分內容,至少在原則上,已經在很多年前通過『通用神經網路’得到解決。” 這樣的系統「還不如人類」。
Schmidhuber表示,隨著運算能力每隔幾年變得更便宜,「舊理論」又回來了。 「我們可以用這些舊演算法做很多當時我們做不到的事情。」
接著,IBM研究員Francesca Rossi向Schmidhuber提出了一個問題:「我們怎麼會看到仍然沒有我們想要的功能的系統?你怎麼看?那些定義的技術仍然沒有進入當前的系統?」
對此,Schmidhuber認為,目前主要是計算成本問題:
循環網路可以運行任意演算法,其中最美妙的方面之一是它還可以學習學習演算法。最大的問題是它可以學習哪些演算法?我們可能需要更好的演算法。改進學習演算法的選項。
第一個此類系統出現在1992年。我在1992年寫了第一篇論文。那時候我們對此幾乎無能為力。今天我們可以擁有數百萬和數十億個權重。
最近與我的學生進行的合作表明,這些舊概念在這裡和那裡進行了一些改進,突然間效果非常好,你可以學習比反向傳播更好的新學習演算法。
英屬哥倫比亞大學副教授Jeff Clune
英屬哥倫比亞大學電腦科學副教授Jeff Clune討論的主題是「AI生成演算法:通往AGI的最快路徑」。
Clune表示,今天人工智慧走的是一條「人工道路」,這也就意味著各種學習規則和目標函數等等都需要靠人來手動完成。
對此他認為,在未來的實踐中,人工設計的方法終究是要讓位給自動產生的。
隨後,Clune又提出了推動AI發展的「三大支柱」:元學習架構、元學習演算法,以及自動產生有效的學習環境和數據。
在此,Clune建議增加一個「第四支柱」,即「利用人類資料」。例如,在Minecraft環境中運行的模型,就可以透過學習人類玩遊戲的影片來獲得「巨大的提升」。
最後,Clune預測,我們有30%的可能性在2030年實現AGI,而且還不需要新的範式。
值得注意的是,此處AGI被定義為「能夠完成50%以上的有經濟價值的人類工作」。
總結一下
在討論的最後,馬庫斯讓所有參與者在30秒內回答一個問題:「如果你能給學生一條建議,例如,現在我們最需要研究哪個人工智慧的問題,或者如何為人工智慧日益成為主流和中心的世界做好準備,建議是什麼?」
##Choi表示:「我們必須處理AI與人類價值觀保持一致的問題,尤其是要強調多元化;我認為這是我們面臨的真正關鍵挑戰之一,更廣泛地應對諸如魯棒性、泛化和可解釋性等挑戰。」
George從研究方向角度給予建議:「先確定好想從事規模化研究還是基礎研究,因為它們有不同的軌跡。」
Clune:「AGI即將到來。所以,對於開發AI的研究人員,我鼓勵你們從事基於工程、演算法、元學習、端到端學習等技術,因為這些最有可能被吸收進入我們正在創建的AGI。對於非AI研究人員來說,最重要的可能是治理問題。例如,開發AGI時的規則是什麼?規則由誰來決定?我們又該如何讓全世界的研究人員都遵循這套規則?」
馬庫斯在晚會結束時回憶起他在上一場辯論中的發言:「培養人工智慧需要一村子的人。」
「我認為現在更是如此,」他說。 「AI以前是個孩子,現在有點像一個鬧騰的少年,還沒有完全具備成熟的判斷力。」
他總結說:「這一刻既令人興奮又危險。 ”
以上是16位頂尖學者激辯AGI!馬庫斯、LSTM之父、麥克阿瑟天才獎得主齊聚的詳細內容。更多資訊請關注PHP中文網其他相關文章!

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3漢化版
中文版,非常好用