首頁  >  文章  >  後端開發  >  Python 中的協程,到底是怎麼回事?

Python 中的協程,到底是怎麼回事?

WBOY
WBOY轉載
2023-04-14 08:28:021164瀏覽

Python 中的協程,到底是怎麼回事?

一.傳統的Sync語法請求範例

還是一樣, 在了解Async語法的實現之前, 先從一個Sync的語法範例開始, 現在假設有一個HTTP請求, 這個程式會透過這個請求取得對應的回應內容, 並列印出來, 程式碼如下:

import socket
def request(host: str) -> None:
"""模拟请求并打印响应体"""
url: str = f"http://{host}"
sock: socket.SocketType = socket.socket()
sock.connect((host, 80))
sock.send(f"GET {url} HTTP/1.0rnHost: {host}rnrn".encode("ascii"))
response_bytes: bytes = b""
chunk: bytes = sock.recv(4096)
while chunk:
response_bytes += chunk
chunk = sock.recv(4096)
print("n".join([i for i in response_bytes.decode().split("rn")]))
if __name__ == "__main__":
request("so1n.me")

運行程序, 程式能夠正常輸出, 上部分列印了對應的HTTP回應Header, 下部分列印了HTTP回應體, , 可以看到服務端叫我們以https的形式重新請求, 輸出結果如下:

HTTP/1.1 301 Moved Permanently
Server: GitHub.com
Content-Type: text/html
Location: https://so1n.me/
X-GitHub-Request-Id: A744:3871:4136AF:48BD9F:6188DB50
Content-Length: 162
Accept-Ranges: bytes
Date: Mon, 08 Nov 2021 08:11:37 GMT
Via: 1.1 varnish
Age: 104
Connection: close
X-Served-By: cache-qpg1272-QPG
X-Cache: HIT
X-Cache-Hits: 2
X-Timer: S1636359097.026094,VS0,VE0
Vary: Accept-Encoding
X-Fastly-Request-ID: 22fa337f777553d33503cee5282598c6a293fb5e
<html>
<head><title>301 Moved Permanently</title></head>
<body>
<center><h1>301 Moved Permanently</h1></center>
<hr><center>nginx</center>
</body>
</html>

不過這裡並不是想說HTTP請求是如何實現的, 具體我也不太了解, 在這個程式碼中, socket的預設呼叫是阻塞的, 當執行緒呼叫connect或recv(send是不用等待的, 但在高並發下需要先等待drain後才可以send, 小demo不需要用到drain方法), 程式將會暫停直到操作完成。當一次要下載很多網頁的話, 這將會如上篇文章所說的一樣, 大部分的等待時間都花在io上面, cpu卻一直空閒時, 而使用線程池雖然可以解決這個問題, 但是開銷是很大的, 同時作業系統往往會限制一個進程,使用者或機器可以使用的執行緒數, 而協程卻沒有這些限制, 佔用的資源少, 也沒有系統限製瓶頸。

二.非同步的請求

非同步可以讓一個單獨的執行緒處理並發的操作, 不過在上面已經說過了, socket是預設阻塞的, 所以需要把socket設定為非阻塞的, socket提供了setblocking這個方法供開發者選擇是否阻塞, 在設定了非阻塞後, connect和recv方法也要進行更改。

由於沒有了阻塞,程式在呼叫了connect後會馬上返回, 只不過Python的底層是C, 這段程式碼在C中呼叫非阻塞的socket.connect後會拋出一個異常,我們需要捕獲它, 就像這樣:

import socket
sock: socket.SocketType = socket.socket()
sock.setblocking(Flase)
try:
sock.connect(("so1n.me", 80))
except BlockingIOError:
pass

經過一頓操作後, 就開始申請建立連接了, 但是我們還不知道連接啥時候完成建立, 由於連接沒建立時調用send會報錯, 所以可以一直輪詢調用send直到沒報錯就認為是成功(真實代碼需要加超時):

while True:
try:
sock.send(request)
break
except OSError as e:
pass

但是這樣讓CPU空轉太浪費性能了, 而且期間還不能做別的事情, 就像我們點外賣後一直打電話過去問飯菜做好了沒有, 十分浪費電話費用, 要是飯菜做完了就打電話告訴我們, 那就只產生了一筆費用, 非常的省錢(正常情況下也是這樣子) 。這時就需要事件循環登場了,在類UNIX中, 有一個叫select的功能, 它可以等待事件發生後再調用監聽的函數, 不過一開始的實現性能不是很好, 在Linux上被epoll取代,不過介面是類似的, 所在在Python中把這幾個不同的事件循環都封裝在selectors庫中, 同時可以透過DefaultSelector從系統中挑出最好的類select函數。這裡先暫時不說事件循環的原理, 事件循環最主要的是他名字的兩部分, 一個是事件, 一個是循環, 在Python中, 可以用以下方法把事件註冊到事件循環中:

def demo(): pass
selector.register(fd, EVENT_WRITE, demo)

這樣這個事件循環就會監聽對應的檔案描述子fd, 當這個檔案描述子觸發寫入事件(EVENT_WRITE)時,事件循環就會告訴我們可以去呼叫註冊的函數demo。不過如果把上面的程式碼都改為這種方法去運行的話就會發現, 程式好像沒跑就結束了, 但程式其實是有跑的, 只不過他們是完成的了註冊, 然後就等待開發者接收事件循環的事件進行下一步的操作, 所以我們只需要在程式碼的最後面寫上如下程式碼:

while True:
for key, mask in selector.select():
key.data()

這樣程式就會一直運行, 當捕獲到事件的時候, 就會透過for循環告訴我們, 其中key.data是我們註冊的回調函數, 當事件發生時, 就會通知我們, 我們可以透過拿到回調函數然後就運行, 了解完畢後, 我們可以來編寫我們的第一個並發程序,他實作了一個簡單的I/O復用的小邏輯, 程式碼和註解如下:

import socket
from selectors import DefaultSelector, EVENT_READ, EVENT_WRITE
# 选择事件循环
selector: DefaultSelector = DefaultSelector()
# 用于判断是否有事件在运行
running_cnt: int = 0
def request(host: str) -> None:
"""模拟请求并打印响应体"""
# 告诉主函数, 自己的事件还在运行
global running_cnt
running_cnt += 1
# 初始化socket
url: str = f"http://{host}"
sock: socket.SocketType = socket.socket()
sock.setblocking(False)
try:
sock.connect((host, 80))
except BlockingIOError:
pass
response_bytes: bytes = b""
def read_response() -> None:
"""接收响应参数, 并判断请求是否结束"""
nonlocal response_bytes
chunk: bytes = sock.recv(4096)
print(f"recv {host} body success")
if chunk:
response_bytes += chunk
else:
# 没有数据代表请求结束了, 注销监听
selector.unregister(sock.fileno())
global running_cnt
running_cnt -= 1
def connected() -> None:
"""socket建立连接时的回调"""
# 取消监听
selector.unregister(sock.fileno())
print(f"{host} connect success")
# 发送请求, 并监听读事件, 以及注册对应的接收响应函数
sock.send(f"GET {url} HTTP/1.0rnHost: {host}rnrn".encode("ascii"))
selector.register(sock.fileno(), EVENT_READ, read_response)
selector.register(sock.fileno(), EVENT_WRITE, connected)
if __name__ == "__main__":
# 同时多个请求
request("so1n.me")
request("github.com")
request("google.com")
request("baidu.com")
# 监听是否有事件在运行
while running_cnt > 0:
# 等待事件循环通知事件是否已经完成
for key, mask in selector.select():
key.data()

這段程式碼接近同時註冊了4個請求並註冊建立連接回調, 然後就進入事件循環邏輯,也就是把控制權交給事件循環, 直到事件循環告訴程序說收到了socket建立的通知, 程式就會取消註冊的回調然後發送請求, 並註冊一個讀的事件回調, 然後又把控制權交給事件循環, 直到收到了回應的結果才進入處理回應結果函數並且只有收完所有回應結果才會退出程式。以下是我其中的一次執行結果:

so1n.me connect success
github.com connect success
google.com connect success
recv google.com body success
recv google.com body success
baidu.com connect success
recv github.com body success
recv github.com body success
recv baidu.com body success
recv baidu.com body success
recv so1n.me body success
recv so1n.me body success

可以看到他们的执行顺序是随机的, 不是严格的按照so1n.me, github.com, google.com, baidu.com顺序执行, 同时他们执行速度很快, 这个程序的耗时约等于响应时长最长的函数耗时。但是可以看出, 这个程序里面出现了两个回调, 回调会让代码变得非常的奇怪, 降低可读性, 也容易造成回调地狱, 而且当回调发生报错的时候, 我们是很难知道这是由于什么导致的错误, 因为它的上下文丢失了, 这样子排查问题十分的困惑。作为程序员, 一般都不止满足于速度快的代码, 真正想要的是又快, 又能像Sync的代码一样简单, 可读性强, 也能容易排查问题的代码, 这种组合形式的代码的设计模式就叫协程。

协程出现得很早, 它不像线程一样, 被系统调度, 而是能自主的暂停, 并等待事件循环通知恢复。由于协程是软件层面实现的, 所以它的实现方式有很多种, 这里要说的是基于生成器的协程, 因为生成器跟协程一样, 都有暂停让步和恢复的方法(还可以通过throw来抛错), 同时它跟Async语法的协程很像, 通过了解基于生成器的协程, 可以了解Async的协程是如何实现的。

三.基于生成器的协程

3.1生成器

在了解基于生成器的协程之前, 需要先了解下生成器, Python的生成器函数与普通的函数会有一些不同, 只有普通函数中带有关键字yield, 那么它就是生成器函数, 具体有什么不同可以通过他们的字节码来了解:

In [1]: import dis
# 普通函数
In [2]: def aaa(): pass
In [3]: dis.dis(aaa)
1 0 LOAD_CONST 0 (None)
2 RETURN_VALUE
# 普通函数调用函数
In [4]: def bbb():
 ...: aaa()
 ...:
In [5]: dis.dis(bbb)
2 0 LOAD_GLOBAL0 (aaa)
2 CALL_FUNCTION0
4 POP_TOP
6 LOAD_CONST 0 (None)
8 RETURN_VALUE
# 普通生成器函数
In [6]: def ccc(): yield
In [7]: dis.dis(ccc)
1 0 LOAD_CONST 0 (None)
2 YIELD_VALUE
4 POP_TOP
6 LOAD_CONST 0 (None)
8 RETURN_VALUE

上面分别是普通函数, 普通函数调用函数和普通生成器函数的字节码, 从字节码可以看出来, 最简单的函数只需要LOAD_CONST来加载变量None压入自己的栈, 然后通过RETURN_VALUE来返回值, 而有函数调用的普通函数则先加载变量, 把全局变量的函数aaa加载到自己的栈里面, 然后通过CALL_FUNCTION来调用函数, 最后通过POP_TOP把函数的返回值从栈里抛出来, 再把通过LOAD_CONST把None压入自己的栈, 最后返回值。而生成器函数则不一样, 它会先通过LOAD_CONST来加载变量None压入自己的栈, 然后通过YIELD_VALUE返回值, 接着通过POP_TOP弹出刚才的栈并重新把变量None压入自己的栈, 最后通过RETURN_VALUE来返回值。从字节码来分析可以很清楚的看到, 生成器能够在yield区分两个栈帧, 一个函数调用可以分为多次返回, 很符合协程多次等待的特点。

接着来看看生成器的一个使用, 这个生成器会有两次yield调用, 并在最后返回字符串'None', 代码如下:

In [8]: def demo():
 ...: a = 1
 ...: b = 2
 ...: print('aaa', locals())
 ...: yield 1
 ...: print('bbb', locals())
 ...: yield 2
 ...: return 'None'
 ...:
In [9]: demo_gen = demo()
In [10]: demo_gen.send(None)
aaa {'a': 1, 'b': 2}
Out[10]: 1
In [11]: demo_gen.send(None)
bbb {'a': 1, 'b': 2}
Out[11]: 2
In [12]: demo_gen.send(None)
---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
<ipython-input-12-8f8cb075d6af> in <module>
----> 1 demo_gen.send(None)
StopIteration: None

这段代码首先通过函数调用生成一个demo_gen的生成器对象, 然后第一次send调用时返回值1, 第二次send调用时返回值2, 第三次send调用则抛出StopIteration异常, 异常提示为None, 同时可以看到第一次打印aaa和第二次打印bbb时, 他们都能打印到当前的函数局部变量, 可以发现在即使在不同的栈帧中, 他们读取到当前的局部函数内的局部变量是一致的, 这意味着如果使用生成器来模拟协程时, 它还是会一直读取到当前上下文的, 非常的完美。

此外, Python还支持通过yield from语法来返回一个生成器, 代码如下:

In [1]: def demo_gen_1():
 ...: for i in range(3):
 ...: yield i
 ...:
In [2]: def demo_gen_2():
 ...: yield from demo_gen_1()
 ...:
In [3]: demo_gen_obj = demo_gen_2()
In [4]: demo_gen_obj.send(None)
Out[4]: 0
In [5]: demo_gen_obj.send(None)
Out[5]: 1
In [6]: demo_gen_obj.send(None)
Out[6]: 2
In [7]: demo_gen_obj.send(None)
---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
<ipython-input-7-f9922a2f64c9> in <module>
----> 1 demo_gen_obj.send(None)
StopIteration:

通过yield from就可以很方便的支持生成器调用, 假如把每个生成器函数都当做一个协程, 那通过yield from就可以很方便的实现协程间的调用, 此外生成器的抛出异常后的提醒非常人性化, 也支持throw来抛出异常, 这样我们就可以实现在协程运行时设置异常, 比如Cancel,演示代码如下:

In [1]: def demo_exc():
 ...: yield 1
 ...: raise RuntimeError()
 ...:
In [2]: def demo_exc_1():
 ...: for i in range(3):
 ...: yield i
 ...:
In [3]: demo_exc_gen = demo_exc()
In [4]: demo_exc_gen.send(None)
Out[4]: 1
In [5]: demo_exc_gen.send(None)
---------------------------------------------------------------------------
RuntimeErrorTraceback (most recent call last)
<ipython-input-5-09fbb75fdf7d> in <module>
----> 1 demo_exc_gen.send(None)
<ipython-input-1-69afbc1f9c19> in demo_exc()
1 def demo_exc():
2 yield 1
----> 3 raise RuntimeError()
4
RuntimeError:
In [6]: demo_exc_gen_1 = demo_exc_1()
In [7]: demo_exc_gen_1.send(None)Out[7]: 0
n [8]: demo_exc_gen_1.send(None) Out[8]: 1
In [9]: demo_exc_gen_1.throw(RuntimeError) ---------------------------------------------------------------------------
RuntimeErrorTraceback (most recent call last)
<ipython-input-9-1a1cc55d71f4> in <module>
----> 1 demo_exc_gen_1.throw(RuntimeError)
<ipython-input-2-2617b2366dce> in demo_exc_1()
1 def demo_exc_1():
2 for i in range(3):
----> 3 yield i
4
RuntimeError:

从中可以看到在运行中抛出异常时, 会有一个非常清楚的抛错, 可以明显看出错误堆栈, 同时throw指定异常后, 会在下一处yield抛出异常(所以协程调用Cancel后不会马上取消, 而是下一次调用的时候才被取消)。

3.2用生成器实现协程

我们已经简单的了解到了生成器是非常的贴合协程的编程模型, 同时也知道哪些生成器API是我们需要的API, 接下来可以模仿Asyncio的接口来实现一个简单的协程。

首先是在Asyncio中有一个封装叫Feature, 它用来表示协程正在等待将来时的结果, 以下是我根据asyncio.Feature封装的一个简单的Feature, 它的API没有asyncio.Feature全, 代码和注释如下:

class Status:
"""用于判断Future状态"""
pending: int = 1
finished: int = 2
cancelled: int = 3
class Future(object):
def __init__(self) -> None:
"""初始化时, Feature处理pending状态, 等待set result"""
self.status: int = Status.pending
self._result: Any = None
self._exception: Optional[Exception] = None
self._callbacks: List[Callable[['Future'], None]] = []
def add_done_callback(self, fn: [['Future'], None]Callable) -> None:
"""添加完成时的回调"""
self._callbacks.append(fn)def cancel(self):
"""取消当前的Feature"""
if self.status != Status.pending:
return False
self.status = Status.cancelled
for fn in self._callbacks:
fn(self)
return True
def set_exception(self, exc: Exception) -> None:
"""设置异常"""
if self.status != Status.pending:
raise RuntimeError("Can not set exc")
self._exception = exc
self.status = Status.finished
def set_result(self, result: Any) -> None:
"""设置结果"""
if self.status != Status.pending:
raise RuntimeError("Can not set result")
self.status = Status.finished
self._result = result
for fn in self._callbacks:
fn(self)
def result(self):
"""获取结果"""
if self.status == Status.cancelled:
raise asyncio.CancelledError
elif self.status != Status.finished:
raise RuntimeError("Result is not read")
elif self._exception is not None:
raise self._exception
return self._result
def __iter__(self):
"""通过生成器来模拟协程, 当收到结果通知时, 会返回结果"""
if self.status == Status.pending:
yield self
return self.result()

在理解Future时, 可以把它假想为一个状态机, 在启动初始化的时候是peding状态, 在运行的时候我们可以切换它的状态, 并且通过__iter__方法来支持调用者使用yield from Future()来等待Future本身, 直到收到了事件通知时, 可以得到结果。

但是可以发现这个Future是无法自我驱动, 调用了__iter__的程序不知道何时被调用了set_result, 在Asyncio中是通过一个叫Task的类来驱动Future, 它将一个协程的执行过程安排好, 并负责在事件循环中执行该协程。它主要有两个方法:

1.初始化时, 会先通过send方法激活生成器

2.后续被调度后马上安排下一次等待, 除非抛出StopIteration异常

还有一个支持取消运行托管协程的方法(在原代码中, Task是继承于Future, 所以Future有的它都有), 经过简化后的代码如下:

class Task:
def __init__(self, coro: Generator) -> None:
# 初始化状态
self.cancelled: bool = False
self.coro: Generator = coro
# 预激一个普通的future
f: Future = Future()
f.set_result(None)
self.step(f)
def cancel(self) -> None:
"""用于取消托管的coro"""
self.coro.throw(asyncio.CancelledError)
def step(self, f: Future) -> None:
"""用于调用coro的下一步, 从第一次激活开始, 每次都添加完成时的回调, 直到遇到取消或者StopIteration异常"""
try:
_future = self.coro.send(f.result())
except asyncio.CancelledError:
self.cancelled = True
return
except StopIteration:
return
_future.add_done_callback(self.step)

这样Future和Task就封装好了, 可以简单的试一试效果如何:

In [2]:def wait_future(f: Future, flag_int: int) -> Generator[Future, None, None]:
 ...:result = yield from f
 ...:print(flag_int, result)
 ...:
 ...:future: Future = Future()
 ...:for i in range(3):
 ...:coro = wait_future(future, i)
 ...:# 托管wait_future这个协程, 里面的Future也会通过yield from被托管
 ...:Task(coro)
 ...:
 ...:print('ready')
 ...:future.set_result('ok')
 ...:
 ...:future = Future()
 ...:Task(wait_future(future, 3)).cancel()
 ...:ready
0 ok
1 ok
2 ok
---------------------------------------------------------------------------
CancelledErrorTraceback (most recent call last)
<ipython-input-2-2d1b04db2604> in <module>
 12
 13 future = Future()
---> 14 Task(wait_future(future, 3)).cancel()
<ipython-input-1-ec3831082a88> in cancel(self)
 81
 82 def cancel(self) -> None:
---> 83 self.coro.throw(asyncio.CancelledError)
 84
 85 def step(self, f: Future) -> None:
<ipython-input-2-2d1b04db2604> in wait_future(f, flag_int)
1 def wait_future(f: Future, flag_int: int) -> Generator[Future, None, None]:
----> 2 result = yield from f
3 print(flag_int, result)
4
5 future: Future = Future()
<ipython-input-1-ec3831082a88> in __iter__(self)
 68 """通过生成器来模拟协程, 当收到结果通知时, 会返回结果"""
 69 if self.status == Status.pending:
---> 70 yield self
 71 return self.result()
 72
CancelledError:

这段程序会先初始化Future, 并把Future传给wait_future并生成生成器, 再交由给Task托管, 预激,  由于Future是在生成器函数wait_future中通过yield from与函数绑定的, 真正被预激的其实是Future的__iter__方法中的yield self, 此时代码逻辑会暂停在yield self并返回。在全部预激后, 通过调用Future的set_result方法, 使Future变为结束状态, 由于set_result会执行注册的回调, 这时它就会执行托管它的Task的step方法中的send方法, 代码逻辑回到Future的__iter__方法中的yield self, 并继续往下走, 然后遇到return返回结果, 并继续走下去, 从输出可以发现程序封装完成且打印了ready后, 会依次打印对应的返回结果, 而在最后一个的测试cancel方法中可以看到,Future抛出异常了, 同时这些异常很容易看懂, 能够追随到调用的地方。

现在Future和Task正常运行了, 可以跟我们一开始执行的程序进行整合, 代码如下:

class HttpRequest(object):
def __init__(self, host: str):
"""初始化变量和sock"""
self._host: str = host
global running_cnt
running_cnt += 1
self.url: str = f"http://{host}"
self.sock: socket.SocketType = socket.socket()
self.sock.setblocking(False)
try:
self.sock.connect((host, 80))
except BlockingIOError:
pass
def read(self) -> Generator[Future, None, bytes]:
"""从socket获取响应数据, 并set到Future中, 并通过Future.__iter__方法或得到数据并通过变量chunk_future返回"""
f: Future = Future()
selector.register(self.sock.fileno(), EVENT_READ, lambda: f.set_result(self.sock.recv(4096)))
chunk_future = yield from f
selector.unregister(self.sock.fileno())
return chunk_future# type: ignore
def read_response(self) -> Generator[Future, None, bytes]:
"""接收响应参数, 并判断请求是否结束"""
response_bytes: bytes = b""
chunk = yield from self.read()
while chunk:
response_bytes += chunk
chunk = yield from self.read()
return response_bytes
def connected(self) -> Generator[Future, None, None]:
"""socket建立连接时的回调"""
# 取消监听
f: Future = Future()
selector.register(self.sock.fileno(), EVENT_WRITE, lambda: f.set_result(None))
yield f
selector.unregister(self.sock.fileno())
print(f"{self._host} connect success")
def request(self) -> Generator[Future, None, None]:
# 发送请求, 并监听读事件, 以及注册对应的接收响应函数
yield from self.connected()
self.sock.send(f"GET {self.url} HTTP/1.0rnHost: {self._host}rnrn".encode("ascii"))
response = yield from self.read_response()
print(f"request {self._host} success, length:{len(response)}")
global running_cnt
running_cnt -= 1
if __name__ == "__main__":
# 同时多个请求
Task(HttpRequest("so1n.me").request())
Task(HttpRequest("github.com").request())
Task(HttpRequest("google.com").request())
Task(HttpRequest("baidu.com").request())
# 监听是否有事件在运行
while running_cnt > 0:
# 等待事件循环通知事件是否已经完成
for key, mask in selector.select():
key.data()

这段代码通过Future和生成器方法尽量的解耦回调函数, 如果忽略了HttpRequest中的connected和read方法则可以发现整段代码跟同步的代码基本上是一样的, 只是通过yield和yield from交出控制权和通过事件循环恢复控制权。同时通过上面的异常例子可以发现异常排查非常的方便, 这样一来就没有了回调的各种糟糕的事情, 开发者只需要按照同步的思路进行开发即可, 不过我们的事件循环是一个非常简单的事件循环例子, 同时对于socket相关都没有进行封装, 也缺失一些常用的API, 而这些都会被Python官方封装到Asyncio这个库中, 通过该库, 我们可以近乎完美的编写Async语法的代码。  

以上是Python 中的協程,到底是怎麼回事?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:51cto.com。如有侵權,請聯絡admin@php.cn刪除