搜尋
首頁科技週邊人工智慧十個用於可解釋AI的Python庫

XAI的目標是為模型的行為和決定提供有意義的解釋,本文整理了目前能夠看到的10個用於可解釋AI的Python庫

什麼是XAI?

XAI,Explainable AI是指可以為人工智慧(AI)決策過程和預測提供清晰易懂的解釋的系統或策略。 XAI 的目標是為他們的行為和決策提供有意義的解釋,這有助於增加信任、提供問責制和模型決策的透明度。 XAI 不僅限於解釋,還以一種使推理更容易為使用者提取和解釋的方式進行 ML 實驗。

在實踐中,XAI 可以透過多種方法實現,例如使用特徵重要性度量、視覺化技術,或透過建立本質上可解釋的模型,例如決策樹或線性迴歸模型。方法的選擇取決於所解決問題的類型和所需的可解釋性等級。

AI 系統被用於越來越多的應用程序,包括醫療保健、金融和刑事司法,在這些應用程式中,AI 對人們生活的潛在影響很大,並且了解做出了決定特定原因至關重要。因為這些領域的錯誤決策成本很高(風險很高),所以XAI 變得越來越重要,因為即使是 AI 做出的決定也需要仔細檢查其有效性和可解釋性。

十個用於可解釋AI的Python庫

可解釋性實踐的步驟

#資料準備:這個階段包含資料的收集和處理。數據應該是高品質的、平衡的並且代表正在解決的現實問題。擁有平衡的、有代表性的、乾淨的數據可以減少未來為保持 AI 的可解釋性而付出的努力。

模型訓練:模型在準備好的資料上進行訓練,傳統的機器學習模型或深度學習神經網路都可以。模型的選擇取決於要解決的問題和所需的可解釋性等級。模型越簡單就越容易解釋結果,但是簡單模型的效能並不會很高。

模型評估:選擇適當的評估方法和效能指標對於維持模型的可解釋性是必要的。在此階段評估模型的可解釋性也很重要,這樣確保它能夠為其預測提供有意義的解釋。

解釋生成:這可以使用各種技術來完成,例如特徵重要性度量、視覺化技術,或透過建立固有的可解釋模型。

解釋驗證:驗證模型產生的解釋的準確性和完整性。這有助於確保解釋是可信的。

部署與監控:XAI 的工作不會在模型建立和驗證時結束。它需要在部署後進行持續的可解釋性工作。在真實環境中進行監控,定期評估系統的效能和可解釋性非常重要。

1、SHAP (SHapley Additive exPlanations)

SHAP是一種博弈論方法,可用來解釋任何機器學習模型的產出。它使用博弈論中的經典Shapley值及其相關擴展將最佳信用分配與本地解釋聯繫起來。

十個用於可解釋AI的Python庫

2、LIME(Local Interpretable Model-agnostic Explanations)

LIME 是一種與模型無關的方法,它透過圍繞特定預測在局部近似模型的行為來工作。 LIME 試圖解釋機器學習模型在做什麼。 LIME 支援解釋文字分類器、表格類別資料或影像的分類器的個別預測。

十個用於可解釋AI的Python庫

3、Eli5

ELI5是一個Python套件,它可以幫助除錯機器學習分類器並解釋它們的預測。它提供了以下機器學習框架和套件的支援:

  • scikit-learn:ELI5可以解釋scikit-learn線性分類器和回歸器的權重和預測,可以將決策樹列印為文字或SVG,顯示特徵的重要性,並解釋決策樹和基於樹整合的預測。 ELI5也可以理解scikit-learn中的文字處理程序,並相應地突出顯示文字資料。
  • Keras -透過Grad-CAM視覺化解釋影像分類器的預測。
  • XGBoost -顯示特徵的重要性,解釋XGBClassifier, XGBRegressor和XGBoost . booster的預測。
  • LightGBM -顯示特徵的重要性,解釋LGBMClassifier和LGBMRegressor的預測。
  • CatBoost:顯示CatBoostClassifier和CatBoostRegressor的特徵重要性。
  • lightning -解釋lightning 分類器和回歸器的權重和預測。
  • sklearn-crfsuite。 ELI5允許檢查sklearn_crfsuite.CRF模型的權重。

基本用法:

Show_weights() 顯示模型的所有權重,Show_prediction() 可用來檢查模型的個別預測

十個用於可解釋AI的Python庫

ELI5也實作了一些檢查黑盒模型的演算法:

TextExplainer使用LIME演算法解釋任何文字分類器的預測。排列重要性法可用來計算黑盒估計器的特徵重要性。

十個用於可解釋AI的Python庫

4、Shapash

Shapash提供了幾種類型的視覺化,可以更容易理解模型。透過摘要來理解模型提出的決策。此計畫由MAIF資料科學家開發。 Shapash主要透過一組出色的視覺化來解釋模型。

Shapash透過web應用程式機制運作,與Jupyter/ipython可以完美的結合。

from shapash import SmartExplainer
 
 xpl = SmartExplainer(
 model=regressor,
 preprocessing=encoder, # Optional: compile step can use inverse_transform method
 features_dict=house_dict# Optional parameter, dict specifies label for features name
 )
 
 xpl.compile(x=Xtest,
y_pred=y_pred,
y_target=ytest, # Optional: allows to display True Values vs Predicted Values
)
 
 xpl.plot.contribution_plot("OverallQual")

十個用於可解釋AI的Python庫

5、Anchors

Anchors使用稱為錨點的高精度規則解釋複雜模型的行為,代表局部的「充分」預測條件。該演算法可以有效地計算任何具有高機率保證的黑盒模型的解釋。

Anchors可以被視為LIME v2,其中LIME的一些限制(例如不能為資料的不可見實例擬合模型)已經修正。 Anchors使用局部區域,而不是每個單獨的觀察點。它在計算上比SHAP輕量,因此可以用於高維或大數據集。但是有些限制是標籤只能是整數。

十個用於可解釋AI的Python庫

6、BreakDown

#BreakDown是一種可以用來解釋線性模型預測的工具。它的工作原理是將模型的輸出分解為每個輸入特徵的貢獻。這個包中有兩個主要方法。 Explainer()和Explanation()

model = tree.DecisionTreeRegressor()
 model = model.fit(train_data,y=train_labels)
 
 #necessary imports
 from pyBreakDown.explainer import Explainer
 from pyBreakDown.explanation import Explanation
 
 #make explainer object
 exp = Explainer(clf=model, data=train_data, colnames=feature_names)
 
 #What do you want to be explained from the data (select an observation)
 explanation = exp.explain(observation=data[302,:],direction="up")

十個用於可解釋AI的Python庫

7、Interpret-Text

Interpret-Text 結合了社群為NLP 模型開發的可解釋性技術和用於查看結果的可視化面板。可以在多個最先進的解釋器上運行實驗,並對它們進行比較分析。這個工具包可以在每個標籤上全域或在每個文件中本地解釋機器學習模型。

以下是此套件中可用的解釋器清單:

  • Classical Text Explainer——(預設:邏輯迴歸的詞袋)
  • Unified Information Explainer
  • Introspective Rationale Explainer

十個用於可解釋AI的Python庫

#它的好處是支援CUDA,RNN和BERT等模式。並且可以為文件中特性的重要性產生一個面板

from interpret_text.widget import ExplanationDashboard
 from interpret_text.explanation.explanation import _create_local_explanation
 
 # create local explanation
 local_explanantion = _create_local_explanation(
 classification=True,
 text_explanation=True,
 local_importance_values=feature_importance_values,
 method=name_of_model,
 model_task="classification",
 features=parsed_sentence_list,
 classes=list_of_classes,
 )
 # Dash it
 ExplanationDashboard(local_explanantion)

十個用於可解釋AI的Python庫

8、aix360 (AI Explainability 360)

#AI Explainbability 360工具包是一個開源庫,這個包是由IBM開發的,在他們的平台上廣泛使用。 AI Explainability 360包含一套全面的演算法,涵蓋了不同維度的解釋以及代理解釋性指標。

十個用於可解釋AI的Python庫

工具包結合了以下論文中的演算法和指標:

  • Towards Robust Interpretability with Self-Explaining Neural Networks, 2018. ref
  • Boolean Decision Rules via Column Generation, 2018. ref
  • Explanations Based on the Missing: Towards Contrastive Explanations with Pertinent Negatives, 2018. ref
  • Improving Simple Models with Confidence Profiles, , 2018. ref
  • Efficient Data Representation by Selecting Prototypes with Importance Weights, 2019. ref
  • TED: Teaching AI to Explain Its Decisions, 2019. ref
  • Variational Inference of Disentangled Latent Concepts from Unlabeled Data, 2018. ref
  • Generating Contrastive Explanations with Monotonic Attribute Functions, 2019. ref
  • Generalized Linear Rule Models, 2019. ref

9、OmniXAI

OmniXAI (Omni explable AI的缩写),解决了在实践中解释机器学习模型产生的判断的几个问题。

它是一个用于可解释AI (XAI)的Python机器学习库,提供全方位的可解释AI和可解释机器学习功能,并能够解决实践中解释机器学习模型所做决策的许多痛点。OmniXAI旨在成为一站式综合库,为数据科学家、ML研究人员和从业者提供可解释的AI。

from omnixai.visualization.dashboard import Dashboard
 # Launch a dashboard for visualization
 dashboard = Dashboard(
instances=test_instances,# The instances to explain
local_explanations=local_explanations, # Set the local explanations
global_explanations=global_explanations, # Set the global explanations
prediction_explanations=prediction_explanations, # Set the prediction metrics
class_names=class_names, # Set class names
explainer=explainer# The created TabularExplainer for what if analysis
 )
 dashboard.show()

十個用於可解釋AI的Python庫

10、XAI (eXplainable AI)

XAI 库由 The Institute for Ethical AI & ML 维护,它是根据 Responsible Machine Learning 的 8 条原则开发的。它仍处于 alpha 阶段因此请不要将其用于生产工作流程。

以上是十個用於可解釋AI的Python庫的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
外推指南外推指南Apr 15, 2025 am 11:38 AM

介紹 假設有一個農民每天在幾週內觀察農作物的進展。他研究了增長率,並開始思考他的植物在幾週內可以生長的高度。從Th

軟AI的興起及其對當今企業的意義軟AI的興起及其對當今企業的意義Apr 15, 2025 am 11:36 AM

軟AI(被定義為AI系統,旨在使用近似推理,模式識別和靈活的決策執行特定的狹窄任務 - 試圖通過擁抱歧義來模仿類似人類的思維。 但是這對業務意味著什麼

為AI前沿的不斷發展的安全框架為AI前沿的不斷發展的安全框架Apr 15, 2025 am 11:34 AM

答案很明確 - 只是雲計算需要向雲本地安全工具轉變,AI需要專門為AI獨特需求而設計的新型安全解決方案。 雲計算和安全課程的興起 在

生成AI的3種方法放大了企業家:當心平均值!生成AI的3種方法放大了企業家:當心平均值!Apr 15, 2025 am 11:33 AM

企業家,並使用AI和Generative AI來改善其業務。同時,重要的是要記住生成的AI,就像所有技術一樣,都是一個放大器 - 使得偉大和平庸,更糟。嚴格的2024研究O

Andrew Ng的新簡短課程Andrew Ng的新簡短課程Apr 15, 2025 am 11:32 AM

解鎖嵌入模型的力量:深入研究安德魯·NG的新課程 想像一個未來,機器可以完全準確地理解和回答您的問題。 這不是科幻小說;多虧了AI的進步,它已成為R

大語言模型(LLM)中的幻覺是不可避免的嗎?大語言模型(LLM)中的幻覺是不可避免的嗎?Apr 15, 2025 am 11:31 AM

大型語言模型(LLM)和不可避免的幻覺問題 您可能使用了諸如Chatgpt,Claude和Gemini之類的AI模型。 這些都是大型語言模型(LLM)的示例,在大規模文本數據集上訓練的功能強大的AI系統

60%的問題 -  AI搜索如何消耗您的流量60%的問題 - AI搜索如何消耗您的流量Apr 15, 2025 am 11:28 AM

最近的研究表明,根據行業和搜索類型,AI概述可能導致有機交通下降15-64%。這種根本性的變化導致營銷人員重新考慮其在數字可見性方面的整個策略。 新的

麻省理工學院媒體實驗室將人類蓬勃發展成為AI R&D的核心麻省理工學院媒體實驗室將人類蓬勃發展成為AI R&D的核心Apr 15, 2025 am 11:26 AM

埃隆大學(Elon University)想像的數字未來中心的最新報告對近300名全球技術專家進行了調查。由此產生的報告“ 2035年成為人類”,得出的結論是,大多數人擔心AI系統加深的採用

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),