PywebIO介紹
Python當中的PywebIO模組可以幫助開發者在不具備HTML和JavaScript的情況下也能夠迅速建構Web應用或是基於瀏覽器的GUI應用,PywebIO還可以和一些常用的視覺化模組聯用,製作成一個視覺化大螢幕。
我們先來安裝好需要用到的模組。
pip install pywebio pip install cutecharts
上面提到的cutecharts模組是Python當中的手繪風格的可視化神器,相信大家對此並不陌生,我們來看一下它與PywebIO模組結合繪製圖表的效果是什麼樣的,程式碼如下:
from cutecharts.charts import Bar from cutecharts.faker import Faker from pywebio import start_server from pywebio.output import put_html def bar_base(): chart = Bar("Bar-基本示例", width="100%") chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel") chart.add_series("series-A", Faker.values()) put_html(chart.render_notebook()) if __name__ == '__main__': start_server(bar_base, debug=True, port=8080)
output
上述程式碼的邏輯並不難看懂,先實例化一個直方圖Bar()對象,然後填入X軸對應的標籤以及對應Y軸的值,最後呼叫PywebIO模組當中的put_html()方法,我們會看到一個URL。
在瀏覽器當中輸入該URL便能夠看到我們繪製出來的圖表。當然在cutecharts模組當中有Page()方法來將各個圖表都連接起來,做成一張可視化大屏,程式碼如下:
def bar_base(): chart = Bar("Bar-基本示例", width="100%") chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel") chart.add_series("series-A", Faker.values()) return chart def pie_base() -> Pie: chart = Pie("标题", width="100%") ........ return chart def radar_base() -> Radar: chart = Radar("标题", width="100%") ...... return chart def line_base() -> Line: chart = Line("标题", width="100%") ...... return chart def main(): page = Page() page.add(pie_base(), pie_base(), radar_base(), line_base(), bar_base()) put_html(page.render_notebook()) if __name__ == '__main__': start_server(main, debug=True, port=8080)
output
PywebIO和Pyecharts的組合
當PywebIO模組遇上Pyecharts模組時,程式碼的邏輯基本上和cutecharts的一致,先是實例化一個圖表的對象,然後在添加完資料以及設定好圖表的樣式之後,最後呼叫put_html()方法將最後的結果呈現在瀏覽器中。
# `chart` 是你的图表的实例 pywebio.output.put_html(chart.render_notebook())
在這個案例當中我們呼叫Pyecharts當中的組合元件,分別來呈現繪製完成的圖表,程式碼如下:
def bar_plots(): bar = ( Bar() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values()) .add_yaxis("商家B", Faker.values()) .set_global_opts(title_opts=opts.TitleOpts(title="Grid-Bar")) ) return bar def line_plots(): line = ( Line() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values()) .add_yaxis("商家B", Faker.values()) .set_global_opts( title_opts=opts.TitleOpts(title="Grid-Line", pos_top="48%"), legend_opts=opts.LegendOpts(pos_top="48%"), ) ) return line def main(): c = ( Grid() .add(bar_plots(), grid_opts=opts.GridOpts(pos_bottom="60%")) .add(line_plots(), grid_opts=opts.GridOpts(pos_top="60%")) ) c.width = "100%" put_html(c.render_notebook()) if __name__ == '__main__': start_server(main, debug=True, port=8080)
output
PywebIO和Bokeh的組合
PywebIO和Bokeh的組合從程式碼的語法來看會稍微和上面的不太一樣,具體的不同如下所示:
from bokeh.io import output_notebook from bokeh.io import show output_notebook(notebook_type='pywebio') fig = figure(...) ... show(fig)
例如我們來繪製一個簡單的直方圖,程式碼如下:
def bar_plots(): output_notebook(notebook_type='pywebio') fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'] counts = [5, 3, 4, 2, 4, 6] p = figure(x_range=fruits, plot_height=350, title="Fruit Counts", toolbar_location=None, tools="") p.vbar(x=fruits, top=counts, width=0.9) p.xgrid.grid_line_color = None p.y_range.start = 0 show(p) if __name__ == "__main__": start_server(bar_plots, debug=True, port=8080)
output
#基於瀏覽器的GUI應用程式
除了將Pywebio模組與常用的視覺化模組結合用於各種圖表的繪製之外,我們還能用它來建立一個基於瀏覽的圖形介面,我們先來做一個最為簡單的應用,程式碼如下:
from pywebio.input import * from pywebio.output import * data = input_group( "用户数据", [ input("请问您的名字是: ", name="name", type=TEXT), input("输入您的年龄", name="age", type=NUMBER), radio( "哪个洲的", name="continent", options=[ "非洲", "亚洲", "澳大利亚", "欧洲", "北美洲", "南美洲", ], ), checkbox( "用户隐私条例", name="agreement", options=["同意"] ), ], ) put_text("表格输出:") put_table( [ ["名字", data["name"]], ["年龄", data["age"]], ["位置", data["continent"]], ["条例", data["agreement"]], ] )
output
當中部分函數方法的解釋如下:
- # input(): 文字內容的輸入
- radio():代表的是單選框
- checkbox(): 代表的是多選框
- # input_group(): 代表的是輸入組
- put_table(): 代表的是輸出組
- put_text(): 代表的是輸出文字
以上是50 行 Python 程式碼製作一個資料大螢幕!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

記事本++7.3.1
好用且免費的程式碼編輯器