微服務遵循領域驅動設計(DDD),與開發平台無關。 Python 微服務也不例外。 Python3 的物件導向特性使得依照 DDD 對服務進行建模變得更加容易。
微服務架構的強大之處在於它的多語言性。企業將其功能分解為一組微服務,每個團隊自由選擇一個平台。
我們的使用者管理系統已經分解為四個微服務,分別是新增、尋找、搜尋和日誌服務。新增服務在 Java 平台上開發並部署在 Kubernetes 叢集上,以實現彈性和可擴展性。這並不代表其餘的服務也要使用 Java 開發,我們可以自由選擇適合個人服務的平台。
讓我們選擇 Python 作為開發查找服務的平台。尋找服務的模型已經設計好了(參考 2022 年 3 月的文章),我們只需要將這個模型轉換為程式碼和設定。
Python 是一種通用程式語言,已經存在了大約 30 年。在早期,它是自動化腳本的首選。然而,隨著 Django 和 Flask 等框架的出現,它的受歡迎程度越來越高,現在各種領域中都在應用它,例如企業應用程式開發。資料科學和機器學習進一步推動了它的發展,Python 現在是三大程式語言之一。
許多人將 Python 的成功歸功於它容易編碼。這只是一部分原因。只要你的目標是開發小型腳本,Python 就像一個玩具,你會非常喜歡它。然而,當你進入嚴肅的大規模應用程式開發領域時,你將不得不處理大量的 if
# 和 else
,Python 變得與任何其他平台一樣好或一樣壞。例如,採用一種物件導向的方法!許多 Python 開發人員甚至可能沒意識到 Python 支援類別、繼承等功能。 Python 確實支援成熟的物件導向開發,但有它自己的方式 -- Pythonic!讓我們來探索一下!
#AddService
透過將資料儲存到一個 MySQL 資料庫中來將使用者新增至系統。 FindService
的目標是提供一個 REST API 按使用者名稱尋找使用者。域模型如圖 1 所示。它主要由一些值物件組成,如 User
實體的NameName
、#PhoneNumber
以及 UserRepository
。
圖1: 尋找服務的領域模型
讓我們從 Name
開始。由於它是一個值對象,因此必須在創建時進行驗證,並且必須保持不可變。基本結構如圖所示:
class Name:value: strdef __post_init__(self):if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:raise ValueError("Invalid Name")
如你所見,#Name
# 包含一個字串類型的值。作為後期初始化的一部分,我們會驗證它。
Python 3.7 提供了 @dataclass
装饰器,它提供了许多开箱即用的数据承载类的功能,如构造函数、比较运算符等。如下是装饰后的 Name
类:
from dataclasses import dataclass@dataclassclass Name:value: strdef __post_init__(self):if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:raise ValueError("Invalid Name")
以下代码可以创建一个 Name
对象:
name = Name("Krishna")
value
属性可以按照如下方式读取或写入:
name.value = "Mohan"print(name.value)
可以很容易地与另一个 Name
对象比较,如下所示:
other = Name("Mohan")if name == other:print("same")
如你所见,对象比较的是值而不是引用。这一切都是开箱即用的。我们还可以通过冻结对象使对象不可变。这是 Name
值对象的最终版本:
from dataclasses import dataclass@dataclass(frozen=True)class Name:value: strdef __post_init__(self):if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:raise ValueError("Invalid Name")
PhoneNumber
也遵循类似的方法,因为它也是一个值对象:
@dataclass(frozen=True)class PhoneNumber:value: intdef __post_init__(self):if self.value < 9000000000:raise ValueError("Invalid Phone Number")
User
类是一个实体,不是一个值对象。换句话说,User
是可变的。以下是结构:
from dataclasses import dataclassimport datetime@dataclassclass User:_name: Name_phone: PhoneNumber_since: datetime.datetimedef __post_init__(self):if self._name is None or self._phone is None:raise ValueError("Invalid user")if self._since is None:self.since = datetime.datetime.now()
你能观察到 User
并没有冻结,因为我们希望它是可变的。但是,我们不希望所有属性都是可变的。标识字段如 _name
和 _since
是希望不会修改的。那么,这如何做到呢?
Python3 提供了所谓的描述符协议,它会帮助我们正确定义 getter 和 setter。让我们使用 @property
装饰器将 getter 添加到 User
的所有三个字段中。
@propertydef name(self) -> Name:return self._name@propertydef phone(self) -> PhoneNumber:return self._phone@propertydef since(self) -> datetime.datetime:return self._since
phone
字段的 setter 可以使用 @.setter
来装饰:
@phone.setterdef phone(self, phone: PhoneNumber) -> None:if phone is None:raise ValueError("Invalid phone")self._phone = phone
通过重写 __str__()
函数,也可以为 User
提供一个简单的打印方法:
def __str__(self):return self.name.value + " [" + str(self.phone.value) + "] since " + str(self.since)
这样,域模型的实体和值对象就准备好了。创建异常类如下所示:
class UserNotFoundException(Exception):pass
域模型现在只剩下 UserRepository
了。Python 提供了一个名为 abc
的有用模块来创建抽象方法和抽象类。因为 UserRepository
只是一个接口,所以我们可以使用 abc
模块。
任何继承自 abc.ABC
的类都将变为抽象类,任何带有 @abc.abstractmethod
装饰器的函数都会变为一个抽象函数。下面是 UserRepository
的结构:
from abc import ABC, abstractmethodclass UserRepository(ABC):@abstractmethoddef fetch(self, name:Name) -> User:pass
UserRepository
遵循仓储模式。换句话说,它在 User
实体上提供适当的 CRUD 操作,而不会暴露底层数据存储语义。在本例中,我们只需要 fetch()
操作,因为 FindService
只查找用户。
因为 UserRepository
是一个抽象类,我们不能从抽象类创建实例对象。创建对象必须依赖于一个具体类实现这个抽象类。数据层 UserRepositoryImpl
提供了 UserRepository
的具体实现:
class UserRepositoryImpl(UserRepository):def fetch(self, name:Name) -> User:pass
由于 AddService
将用户数据存储在一个 MySQL 数据库中,因此 UserRepositoryImpl
也必须连接到相同的数据库去检索数据。下面是连接到数据库的代码。注意,我们正在使用 MySQL 的连接库。
from mysql.connector import connect, Errorclass UserRepositoryImpl(UserRepository):def fetch(self, name:Name) -> User:try:with connect(host="mysqldb",user="root",password="admin",database="glarimy",) as connection:with connection.cursor() as cursor:cursor.execute("SELECT * FROM ums_users where name=%s", (name.value,))row = cursor.fetchone()if cursor.rowcount == -1:raise UserNotFoundException()else:return User(Name(row[0]), PhoneNumber(row[1]), row[2])except Error as e:raise e
在上面的片段中,我们使用用户 root
/ 密码 admin
连接到一个名为 mysqldb
的数据库服务器,使用名为 glarimy
的数据库(模式)。在演示代码中是可以包含这些信息的,但在生产中不建议这么做,因为这会暴露敏感信息。
fetch()
操作的逻辑非常直观,它对 ums_users
表执行 SELECT 查询。回想一下,AddService
正在将用户数据写入同一个表中。如果 SELECT 查询没有返回记录,fetch()
函数将抛出 UserNotFoundException
异常。否则,它会从记录中构造 User
实体并将其返回给调用者。这没有什么特殊的。
最终,我们需要创建应用层。此模型如图 2 所示。它只包含两个类:控制器和一个 DTO。
图 2: 添加服务的应用层
众所周知,一个 DTO 只是一个没有任何业务逻辑的数据容器。它主要用于在 FindService
和外部之间传输数据。我们只是提供了在 REST 层中将 UserRecord
转换为字典以便用于 JSON 传输:
class UserRecord:def toJSON(self):return {"name": self.name,"phone": self.phone,"since": self.since}
控制器的工作是将 DTO 转换为用于域服务的域对象,反之亦然。可以从 find()
操作中观察到这一点。
class UserController:def __init__(self):self._repo = UserRepositoryImpl()def find(self, name: str):try:user: User = self._repo.fetch(Name(name))record: UserRecord = UserRecord()record.name = user.name.valuerecord.phone = user.phone.valuerecord.since = user.sincereturn recordexcept UserNotFoundException as e:return None
find()
操作接收一个字符串作为用户名,然后将其转换为 Name
对象,并调用 UserRepository
获取相应的 User
对象。如果找到了,则使用检索到的 User`` 对象创建
UserRecord`。回想一下,将域对象转换为 DTO 是很有必要的,这样可以对外部服务隐藏域模型。
UserController
不需要有多个实例,它也可以是单例的。通过重写 __new__
,可以将其建模为一个单例。
class UserController:def __new__(self):if not hasattr(self, ‘instance’):self.instance = super().__new__(self)return self.instancedef __init__(self):self._repo = UserRepositoryImpl()def find(self, name: str):try:user: User = self._repo.fetch(Name(name))record: UserRecord = UserRecord()record.name = user.name.getValue()record.phone = user.phone.getValue()record.since = user.sincereturn recordexcept UserNotFoundException as e:return None
我们已经完全实现了 FindService
的模型,剩下的唯一任务是将其作为 REST 服务公开。
FindService
只提供一个 API,那就是通过用户名查找用户。显然 URI 如下所示:
GET /user/{name}
此 API 希望根据提供的用户名查找用户,并以 JSON 格式返回用户的电话号码等详细信息。如果没有找到用户,API 将返回一个 404 状态码。
我们可以使用 Flask 框架来构建 REST API,它最初的目的是使用 Python 开发 Web 应用程序。除了 HTML 视图,它还进一步扩展到支持 REST 视图。我们选择这个框架是因为它足够简单。 创建一个 Flask 应用程序:
from flask import Flaskapp = Flask(__name__)
然后为 Flask 应用程序定义路由,就像函数一样简单:
@app.route('/user/<name>')def get(name):pass
注意 @app.route
映射到 API /user/<name></name>
,与之对应的函数的 get()
。
如你所见,每次用户访问 API 如 http://server:port/user/Krishna
时,都将调用这个 get()
函数。Flask 足够智能,可以从 URL 中提取 Krishna
作为用户名,并将其传递给 get()
函数。
get()
函数很简单。它要求控制器找到该用户,并将其与通常的 HTTP 头一起打包为 JSON 格式后返回。如果控制器返回 None
,则 get()
函数返回合适的 HTTP 状态码。
from flask import jsonify, abortcontroller = UserController()record = controller.find(name)if record is None:abort(404)else:resp = jsonify(record.toJSON())resp.status_code = 200return resp
最后,我们需要 Flask 应用程序提供服务,可以使用 waitress
服务:
from waitress import serveserve(app, host="0.0.0.0", port=8080)
在上面的片段中,应用程序在本地主机的 8080 端口上提供服务。最终代码如下所示:
from flask import Flask, jsonify, abortfrom waitress import serveapp = Flask(__name__)@app.route('/user/<name>')def get(name):controller = UserController()record = controller.find(name)if record is None:abort(404)else:resp = jsonify(record.toJSON())resp.status_code = 200return respserve(app, host="0.0.0.0", port=8080)
FindService
的代码已经准备完毕。除了 REST API 之外,它还有域模型、数据层和应用程序层。下一步是构建此服务,将其容器化,然后部署到 Kubernetes 上。此过程与部署其他服务妹有任何区别,但有一些 Python 特有的步骤。
在继续前进之前,让我们来看下文件夹和文件结构:
+ ums-find-service+ ums- domain.py- data.py- app.py- Dockerfile- requirements.txt- kube-find-deployment.yml
如你所见,整个工作文件夹都位于 ums-find-service
下,它包含了 ums
文件夹中的代码和一些配置文件,例如 Dockerfile
、requirements.txt
和 kube-find-deployment.yml
。
domain.py
包含域模型,data.py
包含 UserRepositoryImpl
,app.py
包含剩余代码。我们已经阅读过代码了,现在我们来看看配置文件。
第一个是 requirements.txt
,它声明了 Python 系统需要下载和安装的外部依赖项。我们需要用查找服务中用到的每个外部 Python 模块来填充它。如你所见,我们使用了 MySQL 连接器、Flask 和 Waitress 模块。因此,下面是 requirements.txt
的内容。
Flask==2.1.1Flask_RESTfulmysql-connector-pythonwaitress
第二步是在 Dockerfile
中声明 Docker 相关的清单,如下:
FROM python:3.8-slim-busterWORKDIR /umsADD ums /umsADD requirements.txt requirements.txtRUN pip3 install -r requirements.txtEXPOSE 8080ENTRYPOINT ["python"]CMD ["/ums/app.py"]
总的来说,我们使用 Python 3.8 作为基线,除了移动 requirements.txt
之外,我们还将代码从 ums
文件夹移动到 Docker 容器中对应的文件夹中。然后,我们指示容器运行 pip3 install
命令安装对应模块。最后,我们向外暴露 8080 端口(因为 waitress 运行在此端口上)。
为了运行此服务,我们指示容器使用使用以下命令:
python /ums/app.py
一旦 Dockerfile
准备完成,在 ums-find-service
文件夹中运行以下命令,创建 Docker 镜像:
docker build -t glarimy/ums-find-service
它会创建 Docker 镜像,可以使用以下命令查找镜像:
docker images
尝试将镜像推送到 Docker Hub,你也可以登录到 Docker。
docker logindocker push glarimy/ums-find-service
最后一步是为 Kubernetes 部署构建清单。
在之前的文章中,我们已经介绍了如何建立 Kubernetes 集群、部署和使用服务的方法。我假设仍然使用之前文章中的清单文件来部署添加服务、MySQL、Kafka 和 Zookeeper。我们只需要将以下内容添加到 kube-find-deployment.yml
文件中:
apiVersion: apps/v1kind: Deploymentmetadata:name: ums-find-servicelabels:app: ums-find-servicespec:replicas: 3selector:matchLabels:app: ums-find-servicetemplate:metadata:labels:app: ums-find-servicespec:containers:- name: ums-find-serviceimage: glarimy/ums-find-serviceports:- containerPort: 8080---apiVersion: v1kind: Servicemetadata:name: ums-find-servicelabels:name: ums-find-servicespec:type: LoadBalancerports:- port: 8080selector:app: ums-find-service
上面清单文件的第一部分声明了 glarimy/ums-find-service
镜像的 FindService
,它包含三个副本。它还暴露 8080 端口。清单的后半部分声明了一个 Kubernetes 服务作为 FindService
部署的前端。请记住,在之前文章中,mysqldb 服务已经是上述清单的一部分了。
运行以下命令在 Kubernetes 集群上部署清单文件:
kubectl create -f kube-find-deployment.yml
部署完成后,可以使用以下命令验证容器组和服务:
kubectl get services
输出如图 3 所示:
图 3: Kubernetes 服务
它会列出集群上运行的所有服务。注意查找服务的外部 IP,使用 curl
调用此服务:
curl http://10.98.45.187:8080/user/KrishnaMohan
注意:10.98.45.187 对应查找服务,如图 3 所示。
如果我们使用 AddService
创建一个名为 KrishnaMohan
的用户,那么上面的 curl
命令看起来如图 4 所示:
图 4: 查找服务
用户管理系统(UMS)的体系结构包含 AddService
和 FindService
,以及存储和消息传递所需的后端服务,如图 5 所示。可以看到终端用户使用 ums-add-service
的 IP 地址添加新用户,使用 ums-find-service
的 IP 地址查找已有用户。每个 Kubernetes 服务都由三个对应容器的节点支持。还要注意:同样的 mysqldb 服务用于存储和检索用户数据。
图 5: UMS 的添加服务和查找服务
UMS 系统还包含两个服务:SearchService
和 JournalService
。在本系列的下一部分中,我们将在 Node 平台上设计这些服务,并将它们部署到同一个 Kubernetes 集群,以演示多语言微服务架构的真正魅力。最后,我们将观察一些与微服务相关的设计模式。
以上是在 Kubernetes 上使用 Flask 建構 Python 微服務的詳細內容。更多資訊請關注PHP中文網其他相關文章!