搜尋
首頁後端開發Python教學一行 Python 程式碼實作並行

一行 Python 程式碼實作並行

Python 在程式並行化方面多少有些聲名狼藉。撇開技術上的問題,例如線程的實現和 GIL,我覺得錯誤的教學指導才是主要問題。常見的經典 Python 多執行緒、多進程教學多顯得偏"重"。而且常隔靴會搔癢,沒有深入探討日常工作中最有用的內容。

傳統的例子

#簡單搜尋下"Python 多執行緒教學",不難發現幾乎所有的教程都給涉及類別和佇列的範例

import os 
import PIL 

from multiprocessing import Pool 
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
    return (os.path.join(folder, f) 
            for f in os.listdir(folder) 
            if 'jpeg' in f)

def create_thumbnail(filename): 
    im = Image.open(filename)
    im.thumbnail(SIZE, Image.ANTIALIAS)
    base, fname = os.path.split(filename) 
    save_path = os.path.join(base, SAVE_DIRECTORY, fname)
    im.save(save_path)

if __name__ == '__main__':
    folder = os.path.abspath(
        '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
    os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

    images = get_image_paths(folder)

    pool = Pool()
    pool.map(creat_thumbnail, images)
    pool.close()
    pool.join()

#哈,看起來有些像Java 不是嗎?

我並不是說使用生產者/消費者模型處理多執行緒/多行程任務是錯誤的(事實上,這個模型自有其用武之地)。只是,處理日常腳本任務時我們可以使用更有效率的模型。

問題在於…

#首先,你需要一個樣板類別; 
其次,你需要一個佇列來傳遞物件; 
而且,你還需要在通道兩端都建構相應的方法來協助其工作(如果需想要進行雙向溝通或是保存結果還需要再引入一個佇列)。

worker 越多,問題越多

#按照這個思路,你現在需要一個worker 執行緒的執行緒池。以下是 IBM 經典教學中的範例-在進行網頁檢索時會透過多執行緒進行加速。

#Example2.py
'''
A more realistic thread pool example 
'''

import time 
import threading 
import Queue 
import urllib2 

class Consumer(threading.Thread): 
    def __init__(self, queue): 
        threading.Thread.__init__(self)
        self._queue = queue 

    def run(self):
        while True: 
            content = self._queue.get() 
            if isinstance(content, str) and content == 'quit':
                break
            response = urllib2.urlopen(content)
        print 'Bye byes!'

def Producer():
    urls = [
        'http://www.python.org', 'http://www.yahoo.com'
        'http://www.scala.org', 'http://www.google.com'
        # etc.. 
    ]
    queue = Queue.Queue()
    worker_threads = build_worker_pool(queue, 4)
    start_time = time.time()

    # Add the urls to process
    for url in urls: 
        queue.put(url)  
    # Add the poison pillv
    for worker in worker_threads:
        queue.put('quit')
    for worker in worker_threads:
        worker.join()

    print 'Done! Time taken: {}'.format(time.time() - start_time)

def build_worker_pool(queue, size):
    workers = []
    for _ in range(size):
        worker = Consumer(queue)
        worker.start() 
        workers.append(worker)
    return workers

if __name__ == '__main__':
    Producer()

這段程式碼能正確的運行,但仔細看看我們需要做些什麼:建構不同的方法、追蹤一系列的線程,還有為了解決惱人的死鎖問題,我們需要進行一系列的join 操作。這還只是開始…

至此我們回顧了經典的多執行緒教程,多少有些空洞不是嗎?樣板化而且易出錯,這樣事倍功半的風格顯然不那麼適合日常使用,好在我們還有更好的方法。

何不試試map

#map 這小巧精緻的函數是簡捷實作Python 程式並行化的關鍵。 map 源自於 Lisp 這類函數式程式語言。它可以透過一個序列來實現兩個函數之間的映射。

    urls = ['http://www.yahoo.com', 'http://www.reddit.com']
    results = map(urllib2.urlopen, urls)

上面的這兩行程式碼將 urls 這一序列中的每個元素作為參數傳遞到 urlopen 方法中,並將所有結果保存到 results 這一列表中。其結果大致相當於:

results = []
for url in urls: 
    results.append(urllib2.urlopen(url))

map 函數一手包辦了序列操作、參數傳遞和結果保存等一系列的操作。

為什麼這很重要呢?這是因為借助正確的程式庫,map 可以輕鬆實現並行化操作。

一行 Python 程式碼實作並行

在Python 中有個兩個函式庫包含了map 函數:multiprocessing 和它鮮為人知的子函式庫multiprocessing .dummy.

這裡多扯兩句:multiprocessing.dummy? mltiprocessing 函式庫的線程版克隆?這是蝦米?即使在 multiprocessing 庫的官方文件裡關於這一子庫也只有一句相關描述。而這句描述譯成人話基本就是說:"嘛,有這麼個東西,你知道就成."相信我,這個庫被嚴重低估了!

dummy 是 multiprocessing 模組的完整克隆,唯一的不同在於 multiprocessing 作用於進程,而 dummy 模組作用於線程(因此也包括了 Python 所有常見的多線程限制)。 
所以替換使用這兩個函式庫異常容易。你可以針對 IO 密集型任務和 CPU 密集型任務來選擇不同的函式庫。

動手嘗試

#使用下面的兩行程式碼來引用包含並行化map 函數的函式庫:

from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool

實例化Pool 物件:

pool = ThreadPool()

這簡單的語句取代了example2.py 中buildworkerpool 函數7 行程式碼的工作。它產生了一系列的 worker 執行緒並完成初始化工作、將它們儲存在變數中以方便存取。

Pool 物件有一些參數,這裡我所需要關注的只是它的第一個參數:processes. 這個參數用來設定線程池中的線程數。其預設值為目前機器 CPU 的核數。

一般來說,當執行 CPU 密集型任務時,呼叫越多的核心速度就越快。但是當處理網路密集型任務時,事情有有些難以預期了,透過實驗來確定線程池的大小才是明智的。

pool = ThreadPool(4) # Sets the pool size to 4

线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。

创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py

import urllib2 
from multiprocessing.dummy import Pool as ThreadPool 

urls = [
    'http://www.python.org', 
    'http://www.python.org/about/',
    'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
    'http://www.python.org/doc/',
    'http://www.python.org/download/',
    'http://www.python.org/getit/',
    'http://www.python.org/community/',
    'https://wiki.python.org/moin/',
    'http://planet.python.org/',
    'https://wiki.python.org/moin/LocalUserGroups',
    'http://www.python.org/psf/',
    'http://docs.python.org/devguide/',
    'http://www.python.org/community/awards/'
    # etc.. 
    ]

# Make the Pool of workers
pool = ThreadPool(4) 
# Open the urls in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
#close the pool and wait for the work to finish 
pool.close() 
pool.join()

实际起作用的代码只有 4 行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40 行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。

# results = [] 
# for url in urls:
#   result = urllib2.urlopen(url)
#   results.append(result)

# # ------- VERSUS ------- # 

# # ------- 4 Pool ------- # 
# pool = ThreadPool(4) 
# results = pool.map(urllib2.urlopen, urls)

# # ------- 8 Pool ------- # 

# pool = ThreadPool(8) 
# results = pool.map(urllib2.urlopen, urls)

# # ------- 13 Pool ------- # 

# pool = ThreadPool(13) 
# results = pool.map(urllib2.urlopen, urls)

结果:

#        Single thread:  14.4 Seconds 
#               4 Pool:   3.1 Seconds
#               8 Pool:   1.4 Seconds
#              13 Pool:   1.3 Seconds

很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。

另一个真实的例子

生成上千张图片的缩略图 
这是一个 CPU 密集型的任务,并且十分适合进行并行化。

基础单进程版本

import os 
import PIL 

from multiprocessing import Pool 
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
    return (os.path.join(folder, f) 
            for f in os.listdir(folder) 
            if 'jpeg' in f)

def create_thumbnail(filename): 
    im = Image.open(filename)
    im.thumbnail(SIZE, Image.ANTIALIAS)
    base, fname = os.path.split(filename) 
    save_path = os.path.join(base, SAVE_DIRECTORY, fname)
    im.save(save_path)

if __name__ == '__main__':
    folder = os.path.abspath(
        '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
    os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

    images = get_image_paths(folder)

    for image in images:
        create_thumbnail(Image)

上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。

这我的机器上,用这一程序处理 6000 张图片需要花费 27.9 秒。

如果我们使用 map 函数来代替 for 循环:

import os 
import PIL 

from multiprocessing import Pool 
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
    return (os.path.join(folder, f) 
            for f in os.listdir(folder) 
            if 'jpeg' in f)

def create_thumbnail(filename): 
    im = Image.open(filename)
    im.thumbnail(SIZE, Image.ANTIALIAS)
    base, fname = os.path.split(filename) 
    save_path = os.path.join(base, SAVE_DIRECTORY, fname)
    im.save(save_path)

if __name__ == '__main__':
    folder = os.path.abspath(
        '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
    os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

    images = get_image_paths(folder)

    pool = Pool()
    pool.map(creat_thumbnail, images)
    pool.close()
    pool.join()

5.6 秒!

虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。

到这里,我们就实现了(基本)通过一行 Python 实现并行化。

译者:caspar

译文:​https://www.php.cn/link/687fe34a901a03abed262a62e22f90db​​​​m/a/1190000000414339 

原文:https://medium.com/building-things-on-the-internet/40e9b2b36148

以上是一行 Python 程式碼實作並行的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分詞在景區評論分析中的準確性?如何提高jieba分詞在景區評論分析中的準確性?Apr 02, 2025 am 07:09 AM

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版