Python 在程式並行化方面多少有些聲名狼藉。撇開技術上的問題,例如線程的實現和 GIL,我覺得錯誤的教學指導才是主要問題。常見的經典 Python 多執行緒、多進程教學多顯得偏"重"。而且常隔靴會搔癢,沒有深入探討日常工作中最有用的內容。
#簡單搜尋下"Python 多執行緒教學",不難發現幾乎所有的教程都給涉及類別和佇列的範例:
import os import PIL from multiprocessing import Pool from PIL import Image SIZE = (75,75) SAVE_DIRECTORY = 'thumbs' def get_image_paths(folder): return (os.path.join(folder, f) for f in os.listdir(folder) if 'jpeg' in f) def create_thumbnail(filename): im = Image.open(filename) im.thumbnail(SIZE, Image.ANTIALIAS) base, fname = os.path.split(filename) save_path = os.path.join(base, SAVE_DIRECTORY, fname) im.save(save_path) if __name__ == '__main__': folder = os.path.abspath( '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840') os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) images = get_image_paths(folder) pool = Pool() pool.map(creat_thumbnail, images) pool.close() pool.join()
#哈,看起來有些像Java 不是嗎?
我並不是說使用生產者/消費者模型處理多執行緒/多行程任務是錯誤的(事實上,這個模型自有其用武之地)。只是,處理日常腳本任務時我們可以使用更有效率的模型。
#首先,你需要一個樣板類別;
其次,你需要一個佇列來傳遞物件;
而且,你還需要在通道兩端都建構相應的方法來協助其工作(如果需想要進行雙向溝通或是保存結果還需要再引入一個佇列)。
#按照這個思路,你現在需要一個worker 執行緒的執行緒池。以下是 IBM 經典教學中的範例-在進行網頁檢索時會透過多執行緒進行加速。
#Example2.py ''' A more realistic thread pool example ''' import time import threading import Queue import urllib2 class Consumer(threading.Thread): def __init__(self, queue): threading.Thread.__init__(self) self._queue = queue def run(self): while True: content = self._queue.get() if isinstance(content, str) and content == 'quit': break response = urllib2.urlopen(content) print 'Bye byes!' def Producer(): urls = [ 'http://www.python.org', 'http://www.yahoo.com' 'http://www.scala.org', 'http://www.google.com' # etc.. ] queue = Queue.Queue() worker_threads = build_worker_pool(queue, 4) start_time = time.time() # Add the urls to process for url in urls: queue.put(url) # Add the poison pillv for worker in worker_threads: queue.put('quit') for worker in worker_threads: worker.join() print 'Done! Time taken: {}'.format(time.time() - start_time) def build_worker_pool(queue, size): workers = [] for _ in range(size): worker = Consumer(queue) worker.start() workers.append(worker) return workers if __name__ == '__main__': Producer()
這段程式碼能正確的運行,但仔細看看我們需要做些什麼:建構不同的方法、追蹤一系列的線程,還有為了解決惱人的死鎖問題,我們需要進行一系列的join 操作。這還只是開始…
至此我們回顧了經典的多執行緒教程,多少有些空洞不是嗎?樣板化而且易出錯,這樣事倍功半的風格顯然不那麼適合日常使用,好在我們還有更好的方法。
#map 這小巧精緻的函數是簡捷實作Python 程式並行化的關鍵。 map 源自於 Lisp 這類函數式程式語言。它可以透過一個序列來實現兩個函數之間的映射。
urls = ['http://www.yahoo.com', 'http://www.reddit.com'] results = map(urllib2.urlopen, urls)
上面的這兩行程式碼將 urls 這一序列中的每個元素作為參數傳遞到 urlopen 方法中,並將所有結果保存到 results 這一列表中。其結果大致相當於:
results = [] for url in urls: results.append(urllib2.urlopen(url))
map 函數一手包辦了序列操作、參數傳遞和結果保存等一系列的操作。
為什麼這很重要呢?這是因為借助正確的程式庫,map 可以輕鬆實現並行化操作。
在Python 中有個兩個函式庫包含了map 函數:multiprocessing 和它鮮為人知的子函式庫multiprocessing .dummy.
這裡多扯兩句:multiprocessing.dummy? mltiprocessing 函式庫的線程版克隆?這是蝦米?即使在 multiprocessing 庫的官方文件裡關於這一子庫也只有一句相關描述。而這句描述譯成人話基本就是說:"嘛,有這麼個東西,你知道就成."相信我,這個庫被嚴重低估了!
dummy 是 multiprocessing 模組的完整克隆,唯一的不同在於 multiprocessing 作用於進程,而 dummy 模組作用於線程(因此也包括了 Python 所有常見的多線程限制)。
所以替換使用這兩個函式庫異常容易。你可以針對 IO 密集型任務和 CPU 密集型任務來選擇不同的函式庫。
#使用下面的兩行程式碼來引用包含並行化map 函數的函式庫:
from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool
實例化Pool 物件:
pool = ThreadPool()
這簡單的語句取代了example2.py 中buildworkerpool 函數7 行程式碼的工作。它產生了一系列的 worker 執行緒並完成初始化工作、將它們儲存在變數中以方便存取。
Pool 物件有一些參數,這裡我所需要關注的只是它的第一個參數:processes. 這個參數用來設定線程池中的線程數。其預設值為目前機器 CPU 的核數。
一般來說,當執行 CPU 密集型任務時,呼叫越多的核心速度就越快。但是當處理網路密集型任務時,事情有有些難以預期了,透過實驗來確定線程池的大小才是明智的。
pool = ThreadPool(4) # Sets the pool size to 4
线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。
创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py
import urllib2 from multiprocessing.dummy import Pool as ThreadPool urls = [ 'http://www.python.org', 'http://www.python.org/about/', 'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html', 'http://www.python.org/doc/', 'http://www.python.org/download/', 'http://www.python.org/getit/', 'http://www.python.org/community/', 'https://wiki.python.org/moin/', 'http://planet.python.org/', 'https://wiki.python.org/moin/LocalUserGroups', 'http://www.python.org/psf/', 'http://docs.python.org/devguide/', 'http://www.python.org/community/awards/' # etc.. ] # Make the Pool of workers pool = ThreadPool(4) # Open the urls in their own threads # and return the results results = pool.map(urllib2.urlopen, urls) #close the pool and wait for the work to finish pool.close() pool.join()
实际起作用的代码只有 4 行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40 行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。
# results = [] # for url in urls: # result = urllib2.urlopen(url) # results.append(result) # # ------- VERSUS ------- # # # ------- 4 Pool ------- # # pool = ThreadPool(4) # results = pool.map(urllib2.urlopen, urls) # # ------- 8 Pool ------- # # pool = ThreadPool(8) # results = pool.map(urllib2.urlopen, urls) # # ------- 13 Pool ------- # # pool = ThreadPool(13) # results = pool.map(urllib2.urlopen, urls)
结果:
# Single thread: 14.4 Seconds # 4 Pool: 3.1 Seconds # 8 Pool: 1.4 Seconds # 13 Pool: 1.3 Seconds
很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。
生成上千张图片的缩略图
这是一个 CPU 密集型的任务,并且十分适合进行并行化。
import os import PIL from multiprocessing import Pool from PIL import Image SIZE = (75,75) SAVE_DIRECTORY = 'thumbs' def get_image_paths(folder): return (os.path.join(folder, f) for f in os.listdir(folder) if 'jpeg' in f) def create_thumbnail(filename): im = Image.open(filename) im.thumbnail(SIZE, Image.ANTIALIAS) base, fname = os.path.split(filename) save_path = os.path.join(base, SAVE_DIRECTORY, fname) im.save(save_path) if __name__ == '__main__': folder = os.path.abspath( '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840') os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) images = get_image_paths(folder) for image in images: create_thumbnail(Image)
上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。
这我的机器上,用这一程序处理 6000 张图片需要花费 27.9 秒。
如果我们使用 map 函数来代替 for 循环:
import os import PIL from multiprocessing import Pool from PIL import Image SIZE = (75,75) SAVE_DIRECTORY = 'thumbs' def get_image_paths(folder): return (os.path.join(folder, f) for f in os.listdir(folder) if 'jpeg' in f) def create_thumbnail(filename): im = Image.open(filename) im.thumbnail(SIZE, Image.ANTIALIAS) base, fname = os.path.split(filename) save_path = os.path.join(base, SAVE_DIRECTORY, fname) im.save(save_path) if __name__ == '__main__': folder = os.path.abspath( '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840') os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) images = get_image_paths(folder) pool = Pool() pool.map(creat_thumbnail, images) pool.close() pool.join()
5.6 秒!
虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。
到这里,我们就实现了(基本)通过一行 Python 实现并行化。
译者:caspar
译文:https://www.php.cn/link/687fe34a901a03abed262a62e22f90dbm/a/1190000000414339
原文:https://medium.com/building-things-on-the-internet/40e9b2b36148
以上是一行 Python 程式碼實作並行的詳細內容。更多資訊請關注PHP中文網其他相關文章!