搜尋
首頁後端開發Python教學使用Python進行資料清洗的完整指南

你一​​定聽過這句著名的資料科學名言:

在資料科學專案中, 80% 的時間是在做資料處理。

如果你沒有聽過,那麼請記住:資料清洗是資料科學工作流程的基礎。機器學習模型會根據你提供的資料執行,混亂的資料會導致效能下降甚至錯誤的結果,而乾淨的資料是良好模型效能的先決條件。當然乾淨的數據並不意味著一直都有好的性能,模型的正確選擇(剩餘 20%)也很重要,但是沒有乾淨的數據,即使是再強大的模型也無法達到預期的水平。

在本文中將列出資料清洗中需要解決的問題並展示可能的解決方案,透過本文可以了解如何逐步進行資料清洗。

缺失值

當資料集中包含缺失資料時,在填充之前可以先進行一些資料的分析。因為空單元格本身的位置可以告訴我們一些有用的信息。例如:

  • NA值僅在資料集的尾部或中間出現。這意味著在資料收集過程中可能存在技術問題。可能需要分析該特定樣本序列的資料收集過程,並嘗試找出問題的根源。
  • 如果列NA數量超過 70–80%,可以刪除該列。
  • 如果 NA 值在表單中作為可選問題的欄位中,則該欄位可以被額外的編碼為使用者回答(1)或未回答(0)。

missingno這個python函式庫就可以用來檢查上述情況,並且使用起來非常的簡單,例如下圖中的白線是NA:

import missingno as msno
msno.matrix(df)

使用Python進行資料清洗的完整指南

對於缺失值的填補計算有很多方法,例如:

  • 平均,中位數,眾數
  • kNN
  • 零或常數等

不同的方法相互之間有優勢和不足,並且沒有適用於所有情況的「最佳」技術。具體可以參考我們先前發布的文章

異常值

異常值是相對於資料集的其他點而言非常大或非常小的值。它們的存在極大地影響了數學模型的表現。讓我們來看看這個簡單的範例:

使用Python進行資料清洗的完整指南

在左圖中沒有異常值,我們的線性模型非常適合資料點。在右圖中有一個異常值,當模型試圖覆蓋資料集的所有點時,這個異常值的存在會改變模型的擬合方式,並且使我們的模型不適合至少一半的點。

對於異常值來說我們有必要介紹如何確定異常,這就要從數學角度明確什麼是極大或極小。

大於Q3 1.5 x IQR或小於Q1-1.5 x IQR都可以當例外值。 IQR(四分位數間距) 是 Q3 和 Q1 之間的差 (IQR = Q3-Q1)。

可以使用下面函數來檢查資料集中異常值的數量:

def number_of_outliers(df):

df = df.select_dtypes(exclude = 'object')

Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1

return ((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).sum()

處理異常值的一種方法是可以讓它們等於 Q3 或 Q1。下面的lower_upper_range 函數使用 pandas 和 numpy 函式庫來尋找其外部為異常值的範圍, 然後使用clip 函式將值裁切到指定的範圍。

def lower_upper_range(datacolumn):
sorted(datacolumn)
Q1,Q3 = np.percentile(datacolumn , [25,75])
IQR = Q3 - Q1
lower_range = Q1 - (1.5 * IQR)
upper_range = Q3 + (1.5 * IQR)
return lower_range,upper_range

for col in columns: 
lowerbound,upperbound = lower_upper_range(df[col])
df[col]=np.clip(df[col],a_min=lowerbound,a_max=upperbound)

資料不一致

異常值問題是關於數字特徵的,現在讓我們看看字元類型(分類)特徵。資料不一致意味著列的唯一類別具有不同的表示形式。例如在性別欄中,既有m/f,又有male/female。在這種情況下,就會有4個類,但實際上有兩類。

這種問題目前沒有自動處理的辦法,所以需要手動進行分析。 pandas 的unique函數就是為了這個分析準備的,下面看一個汽車品牌的例子:

df['CarName'] = df['CarName'].str.split().str[0]
print(df['CarName'].unique())

使用Python進行資料清洗的完整指南

maxda-mazda, Nissan-nissan, porcshce-porsche, toyouta-toyota等都可以進行合併。

df.loc[df['CarName'] == 'maxda', 'CarName'] = 'mazda'
df.loc[df['CarName'] == 'Nissan', 'CarName'] = 'nissan'
df.loc[df['CarName'] == 'porcshce', 'CarName'] = 'porsche'
df.loc[df['CarName'] == 'toyouta', 'CarName'] = 'toyota'
df.loc[df['CarName'] == 'vokswagen', 'CarName'] = 'volkswagen'
df.loc[df['CarName'] == 'vw', 'CarName'] = 'volkswagen'

無效資料

無效的資料表示在邏輯上根本不正確的值。例如,

  • 某人的年齡是560;
  • 某個操作花了-8 小時;
  • 一個人的身高是1200 cm等;

對於數值列,pandas的describe 函數可用於識別此類錯誤:

df.describe()

使用Python進行資料清洗的完整指南

無效資料的產生原因可能有兩種:

1、資料收集錯誤:例如在輸入時沒有進行範圍的判斷,在輸入身高時錯誤的輸入了1799cm 而不是179cm,但是程式沒有對資料的範圍進行判斷。

2、資料操作錯誤

数据集的某些列可能通过了一些函数的处理。 例如,一个函数根据生日计算年龄,但是这个函数出现了BUG导致输出不正确。

以上两种随机错误都可以被视为空值并与其他 NA 一起估算。

重复数据

当数据集中有相同的行时就会产生重复数据问题。 这可能是由于数据组合错误(来自多个来源的同一行),或者重复的操作(用户可能会提交他或她的答案两次)等引起的。 处理该问题的理想方法是删除复制行。

可以使用 pandas duplicated 函数查看重复的数据:

df.loc[df.duplicated()]

在识别出重复的数据后可以使用pandas 的 drop_duplicate 函数将其删除:

df.drop_duplicates()

数据泄漏问题

在构建模型之前,数据集被分成训练集和测试集。 测试集是看不见的数据用于评估模型性能。 如果在数据清洗或数据预处理步骤中模型以某种方式“看到”了测试集,这个就被称做数据泄漏(data leakage)。 所以应该在清洗和预处理步骤之前拆分数据:

使用Python進行資料清洗的完整指南

以选择缺失值插补为例。数值列中有 NA,采用均值法估算。在 split 前完成时,使用整个数据集的均值,但如果在 split 后完成,则使用分别训练和测试的均值。

第一种情况的问题是,测试集中的推算值将与训练集相关,因为平均值是整个数据集的。所以当模型用训练集构建时,它也会“看到”测试集。但是我们拆分的目标是保持测试集完全独立,并像使用新数据一样使用它来进行性能评估。所以在操作之前必须拆分数据集。

虽然训练集和测试集分别处理效率不高(因为相同的操作需要进行2次),但它可能是正确的。因为数据泄露问题非常重要,为了解决代码重复编写的问题,可以使用sklearn 库的pipeline。简单地说,pipeline就是将数据作为输入发送到的所有操作步骤的组合,这样我们只要设定好操作,无论是训练集还是测试集,都可以使用相同的步骤进行处理,减少的代码开发的同时还可以减少出错的概率。


以上是使用Python進行資料清洗的完整指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
Python的主要目的:靈活性和易用性Python的主要目的:靈活性和易用性Apr 17, 2025 am 12:14 AM

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python:多功能編程的力量Python:多功能編程的力量Apr 17, 2025 am 12:09 AM

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

每天2小時學習Python:實用指南每天2小時學習Python:實用指南Apr 17, 2025 am 12:05 AM

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。

Python與C:開發人員的利弊Python與C:開發人員的利弊Apr 17, 2025 am 12:04 AM

Python適合快速開發和數據處理,而C 適合高性能和底層控制。 1)Python易用,語法簡潔,適用於數據科學和Web開發。 2)C 性能高,控制精確,常用於遊戲和系統編程。

Python:時間投入和學習步伐Python:時間投入和學習步伐Apr 17, 2025 am 12:03 AM

學習Python所需時間因人而異,主要受之前的編程經驗、學習動機、學習資源和方法及學習節奏的影響。設定現實的學習目標並通過實踐項目學習效果最佳。

Python:自動化,腳本和任務管理Python:自動化,腳本和任務管理Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python和時間:充分利用您的學習時間Python和時間:充分利用您的學習時間Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)