譯者 | 李睿
審校 | 孫淑娟
最佳運輸源自經濟學,如今被發展為如何最佳分配資源的工具。最優運輸理論的起源可以追溯到1781年,當時的法國科學家加斯帕德·蒙格研究了一種據稱「移動地球」的方法,並為拿破崙的軍隊建造防禦工事。整體而言,最優運輸是一個問題,即如何將所有資源(例如鐵礦)從一組起點(礦場)移動到一組終點(鋼鐵廠),同時最小化資源必須移動的總距離。從數學上來說,研究人員希望找到一個函數,該函數將每個起點映射到一個目的地,同時最小化起點與其對應目的地之間的總距離。儘管其描述無傷大雅,但這一問題的原始構想(即蒙格構想)的進展仍停滯了將近200年。
在上世紀40年代,蘇聯數學家Leonid Kantorovich將這個問題的構想調整為現代版本,即現在所稱的Monge Kantorov理論,這是朝著解決方案邁出的第一步。這裡的新奇之處在於允許來自同一礦山的一些鐵礦提供給不同的鋼鐵廠。例如,一個礦山60%的鐵礦可以提供給一家鋼鐵廠,而礦山剩餘40%的鐵礦則可以提供給另一個鋼鐵廠。從數學上來說,這不再是一個函數,因為同一個原點現在映射到潛在的多個目的地。與其相反,這被稱為起點分佈和目的地分佈之間的耦合,如下圖所示;從藍色分佈(原點)中選擇一個礦山,並沿著該圖垂直移動,顯示了鐵礦被發送的鋼鐵廠(目的地)的分佈。
作為這一新發展的一部分,Kantorivich引入了一個重要的概念,稱之為Wasserstein距離。與地圖上兩點之間的距離類似,Wasserstein距離(受其原始場景啟發也稱為推土機距離)測量兩個分佈之間的距離,例如本例中的藍色和洋紅色分佈。如果所有的鐵礦都距離所有的鐵廠都很遠,那麼礦山分佈(位置)和鋼鐵廠分佈之間的Wasserstein距離就會很大。即使有了這些新的改進,仍然不清楚是否真的存在運輸鐵礦資源的最佳方式,更不用說採用哪種方式了。最後在上世紀90年代,由於數學分析和最佳化的改進問題獲得部分解決方案,理論開始迅速發展。而進入21世紀,最優運輸開始蔓延到其他領域,如粒子物理學、流體動力學,甚至統計和機器學習。
現代的最優運輸
隨著新理論的爆炸性發展,在過去二十年中,最優運輸已成為許多新的統計和人工智慧演算法的中心。在幾乎每個統計演算法中,資料都被明確或隱式地建模為具有某種潛在的機率分佈。例如,如果收集不同國家的個人收入數據,則該人口收入在每個國家都存在機率分佈。如果希望根據人口的收入分佈對兩個國家進行比較,那麼需要一種方法來衡量這兩個分佈之間的差距。這正是優化運輸(尤其是Wasserstein距離)在數據科學中變得如此有用的原因。然而,Wasserstein距離並不是衡量兩個機率分佈相距距離的唯一指標。事實上,由於它們與物理學和資訊理論的聯繫,L-2距離和Kullback-Leibler(KL)散度這兩種選擇在歷史上更為常見。 Wasserstein距離相對於這些替代方案的主要優勢在於,它在計算距離時同時考慮了數值及其機率,而L-2距離和KL散度僅考慮機率。下圖顯示了一個關於三個虛構的國家收入的人工資料集的範例。
在這種情況下,由於分佈不重疊,藍色和洋紅色分佈之間的L-2距離(或KL散度)將與藍色和綠色分佈之間的L-2距離大致相同。另一方面,藍色和洋紅色分佈之間的Wasserstein距離將遠小於藍色和綠色分佈之間的Wasserstein距離,因為值之間存在顯著差異(水平分離)。 Wasserstein距離的這一特性使其非常適合量化分佈之間的差異,特別是資料集之間的差異。
以最佳運輸實現公平
隨著每天收集大量數據,機器學習在許多行業中變得越來越普遍,數據科學家必須越來越小心謹慎,不要讓他們的分析和演算法延續數據中現有的偏差和偏差永久化。例如,如果房屋抵押貸款批准資料集包含關於申請者種族的信息,但由於使用的方法或無意識偏差,少數族裔在收集過程中受到歧視,則基於該資料訓練的模型將在一定程度上反映潛在的偏差。
优化运输可以从两个方面帮助缓解这种偏差和提高公平性。第一种也是最简单的方法是使用Wasserstein距离来确定数据集中是否存在潜在偏差。例如,可以估计批准给女性的贷款金额分布和批准给男性的贷款金额分配之间的Wasserstein距离,如果Wasserstein距离非常大,即具有统计显著性,那么可能怀疑存在潜在偏差。这种测试两组之间是否存在差异的想法在统计学中被称为双样本假设检验。
或者,当底层数据集本身存在偏差时,甚至可以使用最优运输来强制模型中的公平性。从实际的角度来看,这非常有用,因为许多真实的数据集会表现出一定程度的偏差,并且收集无偏差的数据可能非常昂贵、耗时或不可行。因此,使用现有的数据更为实际,无论数据有多不完善,并尝试确保模型减轻这种偏差。这是通过在模型中强制实施称为强人口统计奇偶性的约束来实现的,该约束迫使模型预测在统计上独立于任何敏感属性。一种方法是将模型预测的分布映射到不依赖于敏感属性的调整预测的分布。然而,调整预测也会改变模型的性能和准确性,因此在模型性能和模型对敏感属性的依赖程度(即公平性)之间存在权衡。
通过尽可能少地更改预测以确保最佳模型性能,同时仍保证新预测独立于敏感属性,从而实现最佳运输。这种调整之后的模型预测的新分布被称为Wasserstein重心,在过去十年中一直是许多研究的主题。Wasserstein重心类似于概率分布的平均值,因为它最小化了从自身到所有其他分布的总距离。下图显示了三个分布(绿色、蓝色和品红色)以及它们的Wasserstein重心(红色)。
在上面的示例中,假设基于包含一个敏感属性(例如婚姻状况)的数据集构建了一个模型来预测某人的年龄和收入,该属性可以取三个可能的值:单身(蓝色)、已婚(绿色)和丧偶/离婚(品红色)。散点图显示了每个不同值的模型预测分布。但是希望调整这些值,以便新模型的预测对一个人的婚姻状况视而不见,可以使用最佳运输将这些分布中的每一个映射到红色的重心。因为所有值都映射到相同的分布,不能再根据收入和年龄来判断一个人的婚姻状况,反之亦然。重心尽可能地保留了模型的保真度。
企业和政府决策中使用的数据和机器学习模型越来越普遍,这导致了新的社会和道德问题的出现,即如何确保这些模型的公平应用。由于收集方式的性质,许多数据集包含某种偏差,因此在它们上训练的模型不会加剧这种偏差或任何历史歧视,这一点很重要。最优运输只是解决这一问题的一种方法,近年来这一问题一直在加剧。如今,有快速有效的方法来计算最佳运输地图和距离,使这种方法适用于现代大型数据集。随着人们越来越依赖基于数据的模型和洞察力,公平性已经并将继续成为数据科学的核心问题,而最佳运输将在实现这一目标方面发挥关键作用。
原文标题:Optimal Transport and its Applications to Fairness,作者:Terrence Alsup
以上是最優運輸及其在公平性的應用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

經常使用“ AI-Ready勞動力”一詞,但是在供應鏈行業中確實意味著什麼? 供應鏈管理協會(ASCM)首席執行官安倍·埃什肯納齊(Abe Eshkenazi)表示,它表示能夠評論家的專業人員

分散的AI革命正在悄悄地獲得動力。 本週五在德克薩斯州奧斯汀,Bittensor最終遊戲峰會標誌著一個關鍵時刻,將分散的AI(DEAI)從理論轉變為實際應用。 與閃閃發光的廣告不同

企業AI面臨數據集成挑戰 企業AI的應用面臨一項重大挑戰:構建能夠通過持續學習業務數據來保持準確性和實用性的系統。 NeMo微服務通過創建Nvidia所描述的“數據飛輪”來解決這個問題,允許AI系統通過持續接觸企業信息和用戶互動來保持相關性。 這個新推出的工具包包含五個關鍵微服務: NeMo Customizer 處理大型語言模型的微調,具有更高的訓練吞吐量。 NeMo Evaluator 提供針對自定義基準的AI模型簡化評估。 NeMo Guardrails 實施安全控制,以保持合規性和適當的

AI:藝術與設計的未來畫卷 人工智能(AI)正以前所未有的方式改變藝術與設計領域,其影響已不僅限於業餘愛好者,更深刻地波及專業人士。 AI生成的藝術作品和設計方案正在迅速取代傳統的素材圖片和許多交易性設計活動中的設計師,例如廣告、社交媒體圖片生成和網頁設計。 然而,專業藝術家和設計師也發現AI的實用價值。他們將AI作為輔助工具,探索新的美學可能性,融合不同的風格,創造新穎的視覺效果。 AI幫助藝術家和設計師自動化重複性任務,提出不同的設計元素並提供創意輸入。 AI支持風格遷移,即將一種圖像的風格應用

Zoom最初以其視頻會議平台而聞名,它通過創新使用Agentic AI來引領工作場所革命。 最近與Zoom的CTO XD黃的對話揭示了該公司雄心勃勃的願景。 定義代理AI 黃d

AI會徹底改變教育嗎? 這個問題是促使教育者和利益相關者的認真反思。 AI融入教育既提出了機遇和挑戰。 正如科技Edvocate的馬修·林奇(Matthew Lynch)所指出的那樣

美國科學研究和技術發展或將面臨挑戰,這或許是由於預算削減導致的。據《自然》雜誌報導,2025年1月至3月期間,美國科學家申請海外工作的數量比2024年同期增加了32%。此前一項民意調查顯示,75%的受訪研究人員正在考慮前往歐洲和加拿大尋找工作。 過去幾個月,數百項NIH和NSF的撥款被終止,NIH今年的新撥款減少了約23億美元,下降幅度接近三分之一。洩露的預算提案顯示,特朗普政府正在考慮大幅削減科學機構的預算,削減幅度可能高達50%。 基礎研究領域的動盪也影響了美國的一大優勢:吸引海外人才。 35

Openai推出了強大的GPT-4.1系列:一個專為現實世界應用設計的三種高級語言模型家族。 這種巨大的飛躍提供了更快的響應時間,增強的理解和大幅降低了成本


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Dreamweaver CS6
視覺化網頁開發工具