搜尋
首頁後端開發Golang深入了解golang中的泛型(Generic)

這篇文章帶給大家的內容是介紹深入理解golang中的泛型?泛型怎麼使用?有一定的參考價值,有需要的朋友可以參考一下,希望對你們有幫助。

深入了解golang中的泛型(Generic)

什麼是泛型

#泛型(Generic)是一種程式設計技術。在強型別語言中, 允許編寫程式碼時使用以後才指定的型別, 在實例化時指定對應的型別。

在泛型中,可以使用型別參數來取代特定的資料型別。這些類型參數可以在類別、方法或介面中聲明,並且可以在這些聲明中使用。使用泛型的程式碼可以在運行時指定實際的類型參數, 這使得程式碼可以適用於多種不同類型的資料。

泛型可以提高程式碼的可讀性、可維護性和可重複使用性。它可以減少程式碼的冗餘程度, 並且可以提供更好的類型安全性和編譯時類型檢查。

我們透過一個具體的例子來解釋為什麼泛型可以減少程式碼的冗餘:

提供一個函數, 傳回a, b 的最小值, 我們需要每一種特定的資料類型「int, float...」寫一個函數; 或使用interface{}「需要對參數進行類型斷言, 對運行性能有影響, 且無法約束傳入的參數」

func minInt(a, b int) int {
    if a > b {
        return b
    }
    return a
}

func minFloat(a, b float64) float64 {
    if a > b {
        return b
    }
    return a
}

func minItf(a, b interface{}) interface{} {
    switch a.(type) {
    case int:
        switch b.(type) {
        case int:
            if a.(int) > b.(int) {
                return b
            }
            return a
        }
    case float64:
        switch b.(type) {
        case float64:
            if a.(float64) > b.(float64) {
                return b
            }
            return a
        }
    }
    return nil
}

從上面的方法我們可以看出, minInt 和minFloat 除了參數與傳回結果的型別不同之外, 其餘程式碼皆相同。那有沒有一種方式可以不指定特定的型別, 在函數呼叫的時候再確定傳入的型別?這裡就引入一個概念叫泛型, 可以簡單理解為寬泛的類型或未指定具體型別。透過引入泛型, 我們就不需要再指定具體的資料型別, min 函數就可以使用下面的方式:

// T 为类型参数, 在调用时确定参数的具体值, 可以为 int, 也可以为 float64;它与 a, b 一样也是参数, 需要调用时传入具体的值;不同的是,T 为类型参数,值为具体的类型, a,b 为函数参数,值为具体类型对应的值
func minIntAndFloat64[T int | float64](a, b T) T { 
    if a < b {
        return a
    }
    return b
}

minIntAndFloat64[int](1, 2) // 实例化/调用时指定具体的类型

go 中的泛型

# #go 在1.8 版本中才引進了泛型。如果你的 go 版本低於 1.8, 那是無法使用泛型的。本文中的程式碼使用的版本為 1.9。在 1.8 版本中, 為支援泛型, 做了大量的改動。

    在函數和型別宣告中引入了型別參數
  • 可以透過介面定義型別的集合, 包含沒有方法的型別
  • 型別推導, 部分場景中會對型別參數進行推導, 可以在呼叫函數時不指定型別參數的值

形參、實參、型別參數、型別實參、實例化

先看一個普通的

add 函數。 add 為函數名稱, x, y 為形參, (x,y int)為參數清單。發生函數呼叫時, add(2, 3) 2, 3 為實參。

類比到泛型, 我們需要一個型別參數, 當發生函數呼叫時傳入對應的型別實參, 帶有型別參數的函數叫做泛型函數。 深入了解golang中的泛型(Generic)[T int | int64] 為型別參數清單, T 為型別參數, int | int64 為型別集合/型別約束。當發生函數呼叫時 add[int](2,3),int 即為型別實參, 這一呼叫我們也叫做實例化, 即確定型別實參。

深入了解golang中的泛型(Generic)

在結構體宣告時, 也可以指定型別參數。

MyStruct[T] 是一個泛型結構體, 可以為泛型結構體定義方法。

深入了解golang中的泛型(Generic)

類型集合、介面

在基礎類型, uint8 表示 0~255 的集合。那麼對於型別參數, 也需要像基礎型別一樣, 定義型別的集合。在上面的例子中

int | string就是類型的集合。那麼如何對類型的集合進行複用呢?這裡就使用了接口來定義。下面就是一個型別集合的定義。因此, 我們可以定義一個泛型函數 add[T Signed](x, y T) T

深入了解golang中的泛型(Generic)

#在go 1.8 之前, 介面的定義是方法的集合, 即實現了介面對應的方法, 就可以轉換為對應的介面。在下面的範例中,

MyInt 類型實作了 Add 方法, 因此可以轉換為 MyInterface

type MyInterface interface {
    Add(x, y int) int
}

type MyInt int

func (mi myInt) Add(x, y int) int {
    return x + y
}

func main() {
    var mi MyInterface = myInt(1)
    fmt.Println(mi.Add(1, 2))
}

如果我們換個角度來思考一下,

MyInterface 可以看作一個型別集合, 即包含了所有實作 add 方法的型別。那麼, MyInterface 就可以當作型別集合使用。例如, 我們可以定義如下泛型函數。

func I[T MyInterface](x, y int, i T) int {
    return i.Add(x, y)
}

在泛型中, 我们的类型集合不仅仅是实现接口中定义方法的类型, 还需要包含基础的类型。因此, 我们可以对接口的定义进行延伸, 使其支持基础类型。为了保证向前兼容, 我们需要对接口类型进行分类:

基础接口类型

只包含方法的集合, 既可以当作类型集合, 又可以作为数据类型进行声明。如下面的 MyInterface。还有一个特殊的接口类型 interface{}, 它可以用来表示任意类型, 即所有的类型都实现了它的空方法。在 1.8 之后可以使用 any 进行声明。

type any = interface{}

type MyInterface interface {
    Add(x, y int) int
    String() string
    String() string  // 非法: String 不能重复声明
    _(x int)         // 非法: 必须要有一个非空的名字
}

接口组合

可以通过接口组合的形式声明新的接口, 从而尽可能的复用接口。从下面的例子可以看出, ReadWriterReaderWrite 的类型集合的交集。

type Reader interface {
        Read(p []byte) (n int, err error)
        Close() error
}

type Writer interface {
        Write(p []byte) (n int, err error)
        Close() error
}

// ReadWriter&#39;s methods are Read, Write, and Close.
type ReadWriter interface {
        Reader  // includes methods of Reader in ReadWriter&#39;s method set
        Writer  // includes methods of Writer in ReadWriter&#39;s method set
}

通用接口

上面说的接口都必须要实现具体的方法, 但是类型集合中无法包含基础的数据类型。如: int, float, string...。通过下面的定义, 可以用来表示包含基础数据类型的类型集合。在 golang.org/x/exp/constraints 中定义了基础数据类型的集合。我们可以看到 符号, 它表示包含潜在类型为 int | int8 | int16 | int32 | int64 的类型, | 表示取并集。Singed 就表示所有类型为 int 的类型集合。

// Signed is a constraint that permits any signed integer type.
// If future releases of Go add new predeclared signed integer types,
// this constraint will be modified to include them.
type Signed interface {
     ~int | ~int8 | ~int16 | ~int32 | ~int64
}

type myInt int // 潜在类型为 int

func add[T constraints.Integer](x, y T) T {
        return x + y
}

func main() {
        var x, y myInt = 1, 2
        fmt.Println(add[myInt](x, y))
}

下面来看一些特殊的定义

// 潜在类型为 int, 并且实现了 String 方法的类型
type E interface {
    ~int
    String() string
}

type mInt int // 属于 E 的类型集合
func (m mInt) String() string {
    return fmt.Sprintf("%v", m)
}

// 潜在类型必须是自己真实的类型
type F interface {
    ~int
    // ~mInt  invalid use of ~ (underlying type of mInt is int)
    // ~error illegal: error is an interface
}

// 基础接口可以作为形参和类型参数类型, 通用类型只能作为类型参数类型, E 只能出现在类型参数中 [T E]
var x E                    // illegal: cannot use type E outside a type constraint: interface contains type constraints
var x interface{} = E(nil) // illegal: cannot use interface E in conversion (contains specific type constraints or is comparable)

类型推导

由于泛型使用了类型参数, 因此在实例化泛型时我们需要指定类型实参。 看下面的 case, 我们在调用函数的时候并没有指定类型实参, 这里是编译器进行了类型推导, 推导出类型实参, 不需要显性的传入。

func add[T constraints.Integer](x, y T) T {
    return x + y
}

func main() {
    fmt.Println(add(1, 1)) // add[int](1,1)
}

有时候, 编译器无法推导出具体类型。则需要指定类型, 或者更换写法, 也许可以推断出具体类型。

// 将切片中的值扩大
func Scale[E constraints.Integer](s []E, c E) []E {
    r := make([]E, len(s))
    for i, v := range s {
        r[i] = v * c
    }
    return r
}

func ScaleAndPrint(p Point) {
    r := Scale(p, 2)
    r.string() // 非法, Scale 返回的是 []int32
}

type Point []int32

func (p Point) string() {
    fmt.Println(p)
}

// 方法更新,这样传入的是 Point 返回的也是 Point
func Scale[T ~[]E, E constraints.Integer](s T, c E) T {
    r := make([]E, len(s))
    for i, v := range s {
        r[i] = v * c
    }
    return r
}

泛型的使用

go 是在 1.8 版本中开始引入泛型的。下面主要介绍一下什么时候使用泛型:

内置容器类型

在 go 中, 提供以下容器类型:map, slice, channel。当我们用到容器类型时, 且逻辑与容器具体的类型无关, 这个时候可以考虑泛型。这样我们可以在调用时指定具体的类型实参, 从而避免了类型断言。例如,下面的例子, 返回 map 中的 key。

// comparable 是一个内置类型, 只能用于对类型参数的约束。在 map 中, key 必须是可比较类型。
func GetKeys[K comparable, V any](m map[K]V) []K {
    res := make([]K, 0, len(m))
    for k := range m {
        res = append(res, k)
    }
    return res
}

通用的结构体

对于一些通用的结构体, 我们应该使用泛型。例如, 栈、队列、树结构。这些都是比较通用的结构体, 且逻辑都与具体的类型无关, 因此需要使用泛型。下面是一个栈的例子:

type Stack[T any] []T

func (s *Stack[T]) Push(item T) {
    *s = append(*s, item)
}

func (s *Stack[T]) Pop() T {
    if len(*s) == 0 {
        panic("can not pop item in emply stack")
    }
    lastIndex := len(*s) - 1
    item := (*s)[lastIndex]
    *s = (*s)[:lastIndex]
    return item
}

func main() {
    var s Stack[int]
    s.Push(9)
    fmt.Println(s.Pop())
    s.Push(9)
    s.Push(8)
    fmt.Println(s.Pop(), s.Pop())
}

通用的函数

有些类型会实现相同的方法, 但是对于这些类型的处理逻辑又与具体类型的实现无关。例如: 两个数比大小, 只要实现 Ordered 接口即可进行大小比较:

func Min[T constraints.Ordered](x, y T) T {
    if x < y {
        return x
    }

    return y
}

func main() {
    fmt.Println(Min(5, 6))
    fmt.Println(Min(6.6, 9.9))
}

总结

go 在引入泛型算是一次较大的改动。我们只有弄清楚类型参数、类型约束、类型集合、基础接口、通用接口、泛型函数、泛型类型、泛型接口等概念, 才能不会困惑。核心改动点还是引入了类型参数, 使用接口来定义类型集合。

当然,也不能为了使用泛型而使用泛型。还是要具体的 case 具体来分析。 简单的指导原则就是, 当你发现你的代码除了类型不同外, 其余代码逻辑都相同; 或者你写了许多重复代码, 仅仅是为了支持不同类型; 那么你可以考虑使用泛型。

推荐学习:Golang教程

以上是深入了解golang中的泛型(Generic)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:掘金社区。如有侵權,請聯絡admin@php.cn刪除
在Golang和Python之間進行選擇:適合您的項目在Golang和Python之間進行選擇:適合您的項目Apr 19, 2025 am 12:21 AM

golangisidealforperformance-Critical-clitageAppations and ConcurrentPrompromming,而毛皮刺激性,快速播種和可及性。 1)forhigh-porformanceneeds,pelectgolangduetoitsefefsefefseffifeficefsefeflicefsiveficefsiveandconcurrencyfeatures.2)fordataa-fordataa-fordata-fordata-driventriventriventriventriventrivendissp pynonnononesp

Golang:並發和行動績效Golang:並發和行動績效Apr 19, 2025 am 12:20 AM

Golang通過goroutine和channel實現高效並發:1.goroutine是輕量級線程,使用go關鍵字啟動;2.channel用於goroutine間安全通信,避免競態條件;3.使用示例展示了基本和高級用法;4.常見錯誤包括死鎖和數據競爭,可用gorun-race檢測;5.性能優化建議減少channel使用,合理設置goroutine數量,使用sync.Pool管理內存。

Golang vs. Python:您應該學到哪種語言?Golang vs. Python:您應該學到哪種語言?Apr 19, 2025 am 12:20 AM

Golang更適合系統編程和高並發應用,Python更適合數據科學和快速開發。 1)Golang由Google開發,靜態類型,強調簡潔性和高效性,適合高並發場景。 2)Python由GuidovanRossum創造,動態類型,語法簡潔,應用廣泛,適合初學者和數據處理。

Golang vs. Python:性能和可伸縮性Golang vs. Python:性能和可伸縮性Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

Golang vs.其他語言:比較Golang vs.其他語言:比較Apr 19, 2025 am 12:11 AM

Go語言在並發編程、性能、學習曲線等方面有獨特優勢:1.並發編程通過goroutine和channel實現,輕量高效。 2.編譯速度快,運行性能接近C語言。 3.語法簡潔,學習曲線平緩,生態系統豐富。

Golang和Python:了解差異Golang和Python:了解差異Apr 18, 2025 am 12:21 AM

Golang和Python的主要區別在於並發模型、類型系統、性能和執行速度。 1.Golang使用CSP模型,適用於高並發任務;Python依賴多線程和GIL,適合I/O密集型任務。 2.Golang是靜態類型,Python是動態類型。 3.Golang編譯型語言執行速度快,Python解釋型語言開發速度快。

Golang vs.C:評估速度差Golang vs.C:評估速度差Apr 18, 2025 am 12:20 AM

Golang通常比C 慢,但Golang在並發編程和開發效率上更具優勢:1)Golang的垃圾回收和並發模型使其在高並發場景下表現出色;2)C 通過手動內存管理和硬件優化獲得更高性能,但開發複雜度較高。

Golang:雲計算和DevOps的關鍵語言Golang:雲計算和DevOps的關鍵語言Apr 18, 2025 am 12:18 AM

Golang在雲計算和DevOps中的應用廣泛,其優勢在於簡單性、高效性和並發編程能力。 1)在雲計算中,Golang通過goroutine和channel機制高效處理並發請求。 2)在DevOps中,Golang的快速編譯和跨平台特性使其成為自動化工具的首選。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。