linux nx是指“No-eXecute”,是linux中的一種保護機制,也就是資料不可執行,防止因為程式運行出現溢出而使得攻擊者的shellcode可能會在資料區嘗試執行的情況。
本教學操作環境:linux5.9.8系統、Dell G3電腦。
linux nx是什麼?
Linux程式常見用的一些保護機制
NX:No-eXecute、 DEP:Data Execute Prevention
gcc -o test test.c // 默认情况下,开启NX保护 gcc -z execstack -o test test.c // 禁用NX保护 gcc -z noexecstack -o test test.c // 开启NX保护
PIE:Position-Independent Excutable、ASLR:Address Space Layout Randomization
-pie
一起使用開啟pie選項編譯可執行檔使得elf擁有共享庫屬性,可以在記憶體任何地方載入運行。與之相似的還有fpic/fPIC,關於其說明https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html-fpic Generate position-independent code (PIC) suitable for use in a shared library, if supported for the target machine. Such code accesses all constant addresses through a global offset table (GOT). The dynamic loader resolves the GOT entries when the program starts (the dynamic loader is not part of GCC; it is part of the operating system). If the GOT size for the linked executable exceeds a machine-specific maximum size, you get an error message from the linker indicating that -fpic does not work; in that case, recompile with -fPIC instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k on the m68k and RS/6000. The x86 has no such limit.) Position-independent code requires special support, and therefore works only on certain machines. For the x86, GCC supports PIC for System V but not for the Sun 386i. Code generated for the IBM RS/6000 is always position-independent. When this flag is set, the macros `__pic__` and `__PIC__` are defined to 1. -fPIC If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table.This option makes a difference on AArch64, m68k, PowerPC and SPARC. Position-independent code requires special support, and therefore works only on certain machines. When this flag is set, the macros `__pic__` and `__PIC__` are defined to 2. -fpie -fPIE These options are similar to -fpic and -fPIC, but the generated position-independent code can be only linked into executables. Usually these options are used to compile code that will be linked using the -pie GCC option. -fpie and -fPIE both define the macros `__pie__` and `__PIE__`. The macros have the value 1 for `-fpie` and 2 for `-fPIE`.
gcc -fpie -pie -o test test.c // 开启PIE gcc -fPIE -pie -o test test.c // 开启PIE gcc -fpic -o test test.c // 开启PIC gcc -fPIC -o test test.c // 开启PIC gcc -no-pie -o test test.c // 关闭PIE
/proc/sys/kernel/randomize_va_space
中,如下:0 - 表示關閉進程位址空間隨機化。
1 - 表示將mmap的基址,stack和vdso頁面隨機化。
2 - 表示在1的基礎上增加堆疊(heap)的隨機化。 (預設)
更改其值方式:echo 0 > /proc/sys/kernel/randomize_va_space
vDSO:virtual dynamic shared object;
mmap:即記憶體的映射。 PIE
則是負責執行程式的基址隨機。
以下摘自Wiki:
Position-independent executable (PIE) implements a random base address for the main executable binary and has been in place since 2003. It provides the same address randomness to since 2003. It provides the same address randomness to the main executable as being used for the shared libraries.
PIE為ASLR的一部分,ASLR為系統功能,PIE則為編譯選項。
註: 在heap分配時,有mmap()
和brk()
兩種方式,由malloc()
分配記憶體時調用,分配較小時brk,否則mmap,128k區別。
Canary對於堆疊的保護,在函數每一次執行時,在堆疊上隨機產生一個Canary值。之後當函數執行結束回傳時偵測Canary值,若不一致系統則報出異常。
如上所述,Canary值置於緩衝區和控制資料之間,當緩衝區溢出,該值被覆寫,從而可以檢測以判斷是否運行出錯或是受到攻擊。緩解緩衝區溢位攻擊。
gcc -o test test.c //默认关闭 gcc -fno-stack-protector -o test test.c //禁用栈保护 gcc -fstack-protector -o test test.c //启用堆栈保护,不过只为局部变量中含有 char 数组的函数插入保护代码 gcc -fstack-protector-all -o test test.c //启用堆栈保护,为所有函数插入保护代码
在Linux中有兩種RELRO模式:」Partial RELRO“
和”Full RELRO“
。 Linux中Partical RELRO預設為開啟。
Partial RELRO:
Full RELRO:
#gcc -z norelro -o a a.c // RELRO關閉,即No RELRO
Note:
以上是linux nx是什麼的詳細內容。更多資訊請關注PHP中文網其他相關文章!