今天來跟大家聊聊與機器學習演算法相關的知識,一起來看看吧!
機器學習的演算法主要包括監督學習、無監督學習、半監督學習、遷移學習、強化學習。
1、監督學習
監督學習是機器學習當中非常常見的一種機器學習類型,就是在已知輸入輸出的情況下訓練出一個模型,並且將輸入映射輸出。
特點:給出了學習目標(例如實際值、標註等等)。
監督學習根據目標結果是離散還是連續,又可以把監督學習分成分類和迴歸。
1.1 分類
該類型的預測目標值是離散的,例如預測是否會下雨,最終的結果只有兩種,下雨或者不下雨兩種類別情況。
目的:根據歷史的結果來預測新樣本的分類結果,針對兩個分類結果的任務稱為二分任務;兩種以上稱為多分類任務。
常見演算法:決策樹、隨機森林、K-最近鄰演算法、邏輯迴歸、支援向量機、人工神經網路。
1.2 迴歸
此類型的預測目標值是連續的,典型的例子預測某個樓盤的價格趨勢。
演算法:線性迴歸、AdaBoosting等。
2、無監督學習
無監督學習的特徵是不需要認為進行資料標註,而是根據模型不斷的進行自我學習、鞏固,最後透過自我總結歸納來學習。學習模型主要包含聚類、降維。
2.1 聚類
主要是指將物理或抽象物件的集合由相似物件組成多個類別過程,可以理解為依照相近的原則進行分組。
演算法:常見的有K-means 演算法、BIRCH演算法、DBSCAN演算法。
2.2 降維
針對高維度資料對系統資源和演算法效能依賴非常大,降維就是把高維度資料中不重要的資訊處理掉同時又保留大部分的重要資訊.簡單來說就是由繁到簡的過程,把複雜的問題盡量簡單話,這樣處理起來難度會小很多。
優點:節省空間、節省演算法消耗的時間、減少系統資源的消耗。
演算法:主成分分析演算法(PCA)
3、半監督學習
#監督學習與無監督學習結合的一種學習方法。半監督學習使用大量的未標記數據,以及同時使用標記數據,來進行模式識別工作。
半監督學習適合由少量標籤的樣本和大量無標籤的樣本,可以實現較高的準確性預測。
4、遷移學習
遷移學習指的是預先訓練的模型被重新用在另一個學習任務中的學習方法。
來源域:已有的知識;目標域:待學習的新知識。
5、強化學習(ReinforcementLearning, RL)
RL也稱為再勵學習、評量學習、增強學習屬於機器學習的典範和方法論之一。
強化學習的任務就是讓智慧型裝置可以像人類一樣,不斷學習、嘗試,然後可以在不同的環境下做出最理想的處理方案,強化屬於連續決策的過程,透過不斷嘗試來發現哪一種是最佳的方式。
案例:AlphaGo利用強化學習演算法擊敗了世界冠軍李世石、GoogleYouTube影片推薦演算法等等。
以上是人工智慧基礎:機器學習常見的演算法介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

大型語言模型(LLMS)的流行激增,工具稱呼功能極大地擴展了其功能,而不是簡單的文本生成。 現在,LLM可以處理複雜的自動化任務,例如Dynamic UI創建和自主a

視頻遊戲可以緩解焦慮,建立焦點或支持多動症的孩子嗎? 隨著醫療保健在全球範圍內挑戰,尤其是在青年中的挑戰,創新者正在轉向一種不太可能的工具:視頻遊戲。現在是世界上最大的娛樂印度河之一

“歷史表明,儘管技術進步推動了經濟增長,但它並不能自行確保公平的收入分配或促進包容性人類發展,”烏托德秘書長Rebeca Grynspan在序言中寫道。

易於使用,使用生成的AI作為您的談判導師和陪練夥伴。 讓我們來談談。 對創新AI突破的這種分析是我正在進行的《福布斯》列的最新覆蓋範圍的一部分,包括識別和解釋

在溫哥華舉行的TED2025會議昨天在4月11日舉行了第36版。它的特色是來自60多個國家 /地區的80個發言人,包括Sam Altman,Eric Schmidt和Palmer Luckey。泰德(Ted)的主題“人類重新構想”是量身定制的

約瑟夫·斯蒂格利茨(Joseph Stiglitz)是2001年著名的經濟學家,是諾貝爾經濟獎的獲得者。斯蒂格利茨認為,AI可能會使現有的不平等和合併權力惡化,並在一些主導公司手中加劇,最終破壞了經濟上的經濟。

圖數據庫:通過關係徹底改變數據管理 隨著數據的擴展及其特徵在各個字段中的發展,圖形數據庫正在作為管理互連數據的變革解決方案的出現。與傳統不同

大型語言模型(LLM)路由:通過智能任務分配優化性能 LLM的快速發展的景觀呈現出各種各樣的模型,每個模型都具有獨特的優勢和劣勢。 有些在創意內容gen上表現出色


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境