機器學習是一門複雜的學科,但由於機器學習框架(例如Google 的TensorFlow)簡化了獲取資料、訓練模型、提供預測和改進未來結果的過程,實現機器學習遠不如以前那麼令人生畏。
TensorFlow 由 Google Brain 團隊創建,最初於 2015 年向公眾發布,是一個用於數值計算和大規模機器學習的開源程式庫。 TensorFlow 將大量機器學習和深度學習模型和演算法(也稱為神經網路)捆綁在一起,並透過常見的程式隱喻使它們變得有用。它使用 Python 或 JavaScript 為建立應用程式提供方便的前端 API,同時在高效能 C 中執行這些應用程式。
TensorFlow與PyTorch和Apache MXNet 等框架競爭,可以訓練和運行深度神經網絡,用於手寫數字分類、圖像識別、詞嵌入、循環神經網絡、用於機器翻譯的序列到序列模型、自然語言處理和基於PDE(偏微分方程)的模擬。最重要的是,TensorFlow 支援大規模生產預測,使用相同的模型進行訓練。
TensorFlow 也有廣泛的預訓練模型庫,可用於你自己的專案。你也可以使用TensorFlow 模型園中的程式碼 作為訓練你自己的模型的最佳實務範例。
TensorFlow 讓開發人員可以建立資料流程圖-描述資料如何透過圖或一系列處理節點移動的結構。圖中的每個節點代表一個數學運算,節點之間的每個連接或邊都是一個多維資料數組,或稱張量。
TensorFlow 應用程式可以在大多數方便的目標上運行:本機、雲端中的叢集、iOS 和 Android 裝置、CPU 或 GPU。如果你使用 Google 自己的雲,你可以在 Google 的自訂TensorFlow 處理單元(TPU) 晶片上運行 TensorFlow,以進一步加速。不過,TensorFlow 所建立的結果模型可以部署在大多數用於提供預測的裝置上。
TensorFlow 2.0 於 2019 年 10 月發布,根據使用者回饋對框架進行了多種改進,使其更易於使用(例如,透過使用相對簡單的 KerasAPI 進行模型訓練)和更高的效能。由於新的 API,分散式訓練更易於運行,並且對 TensorFlow Lite 的支援使在更多種類的平台上部署模型成為可能。但是,必須重寫為早期版本的 TensorFlow 編寫的程式碼——有時只是輕微的,有時是顯著的——以最大限度地利用新的 TensorFlow 2.0 功能。
經過訓練的模型可用於 透過 使用 REST 或gRPC API的 Docker 容器將預測作為服務提供。對於更進階的服務場景,你可以使用Kubernetes
TensorFlow 透過 Python 語言為程式設計師提供了所有這些功能。 Python 易於學習和使用,它提供了方便的方法來表達如何將高階抽象耦合在一起。 TensorFlow 在 Python 3.7 到 3.10 版本上受支持,雖然它可以在早期版本的 Python 上工作,但不能保證這樣做。
TensorFlow 中的節點和張量是 Python 對象,TensorFlow 應用程式本身就是 Python 應用程式。然而,實際的數學運算並不是 Python 中執行的。透過 TensorFlow 提供的轉換庫被編寫為高效能 C 二進位。 Python 只是引導各個部分之間的流量,並提供高階程式抽象來將它們連接在一起。
TensorFlow 中的高階工作(建立節點和圖層並將它們連結在一起)使用Keras庫。 Keras API 表面上很簡單;一個三層的基本模型可以在不到 10 行程式碼中定義,同樣的訓練程式碼只需要幾行程式碼。但如果你想“揭開面紗”,做更細緻的工作,例如編寫自己的訓練循環,你可以這樣做。
Python 是與 TensorFlow 和機器學習一起工作的最受歡迎的語言。但是 JavaScript 現在也是 TensorFlow 的一流語言,JavaScript 的巨大優勢之一是它可以在任何有網頁瀏覽器的地方運行。
TensorFlow.js(稱為 JavaScript TensorFlow 函式庫)使用 WebGL API 透過系統中可用的任何 GPU 來加速運算。也可以使用WebAssembly後端執行,如果你只在 CPU 上運行,它比常規的 JavaScript 後端更快,但最好盡可能使用 GPU。預建模型讓你可以啟動並運行簡單的項目,讓你了解事情的運作方式。
經過訓練的 TensorFlow 模型也可以部署在邊緣運算或行動裝置上,例如 iOS 或 Android 系統。 TensorFlow Lite工具集透過讓你在模型大小和準確性之間進行權衡,優化 TensorFlow 模型以在此類設備上運作良好。較小的模型(即 12MB 對 25MB,甚至 100 MB)的準確度較低,但準確度的損失通常很小,並且被模型的速度和能效所抵消。
TensorFlow 為機器學習開發提供最大的好處是抽象。開發人員可以專注於整體應用程式邏輯,而不是處理實作演算法的細節,或找出將一個函數的輸出連接到另一個函數的輸入的正確方法。 TensorFlow 負責幕後的細節。
TensorFlow 為需要偵錯和了解 TensorFlow 應用程式的開發人員提供了更多便利。每個圖形操作都可以單獨且透明地進行評估和修改,而不是將整個圖形建構成單一不透明物件並立即對其進行評估。這種所謂的「急切執行模式」作為舊版 TensorFlow 的選項提供,現在已成為標準。
TensorBoard視覺化套件可讓你透過基於 Web 的互動式儀表板檢查和分析圖表的運作方式。 Tensorboard.dev服務 (由 Google 託管)可讓你託管和分享用 TensorFlow 編寫的機器學習實驗。它可以免費用於儲存多達 100M 的標量、1GB 的張量資料和 1GB 的二進位物件資料。 (請注意,託管在 Tensorboard.dev 中的任何資料都是公開的,因此請勿將其用於敏感專案。)
TensorFlow 也從Google一流商業機構的支援中獲得了許多優勢。谷歌推動了該專案的快速發展,並創造了許多重要的產品,使 TensorFlow 更易於部署和使用。上述用於在Google雲端中加速效能的 TPU 晶片只是一個例子。
TensorFlow 實現的一些細節使得某些訓練作業很難獲得完全確定的模型訓練結果。有時,在一個系統上訓練的模型與在另一個系統上訓練的模型會略有不同,即使它們提供了完全相同的資料。這種差異的原因很棘手——一個原因是隨機數是如何播種的以及在哪裡播種;另一個與使用 GPU 時的某些非確定性行為有關。 TensorFlow 的 2.0 分支有一個選項,可以透過幾行程式碼在整個工作流程中啟用確定性。但是,此功能以效能為代價,並且僅應在偵錯工作流程時使用。
TensorFlow 與許多其他機器學習框架競爭。 PyTorch、CNTK 和 MXNet 是滿足許多相同需求的三個主要框架。讓我們快速了解它們在哪些方面脫穎而出並與TensorFlow 相比不足:
原文標題:What is TensorFlow? The machine learning library explained
#以上是為什麼TensorFlow可以做機器學習開發?的詳細內容。更多資訊請關注PHP中文網其他相關文章!