Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。
WenetSpeech [4] 是由西工大音频、语音和语言处理研究组 (ASLP@NPU)、出门问问、希尔贝壳联合发布的 1 万多小时多领域语音数据集。为了弥补中文语音预训练模型的空缺,我们开源了基于 WenetSpeech 1 万小时数据训练的中文版 Wav2vec 2.0 和 HuBERT 模型。
为了验证预训练模型的性能,我们在 ASR 任务进行了验证。实验结果表明,在 100 小时有监督数据 ASR 任务上,预训练模型学到的语音表征相对于传统声学 FBank 特征有显著的性能提升,甚至仅用 100 小时有监督数据能够得到和 1000 小时有监督数据可比的结果。
模型链接:https://github.com/TencentGameMate/chinese_speech_pretrain
模型介绍
Wav2vec 2.0 模型
图 1: Wav2vec 2.0 模型结构 (Baevski et al., 2020)
Wav2vec 2.0 [1] 是 Meta 在 2020 年发表的无监督语音预训练模型。它的核心思想是通过向量量化(Vector Quantization,VQ)构造自建监督训练目标,对输入做大量掩码后利用对比学习损失函数进行训练。模型结构如上图 1,基于卷积网络(Convoluational Neural Network,CNN)的特征提取器将原始音频编码为帧特征序列,通过 VQ 模块把每帧特征转变为离散特征 Q,并作为自监督目标。同时,帧特征序列做掩码操作后进入 Transformer [5] 模型得到上下文表示 C。最后通过对比学习损失函数,拉近掩码位置的上下文表示与对应的离散特征 q 的距离,即正样本对。原论文中,Wav2vec 2.0 BASE 模型采用 12 层的 Transformer 结构,用 1000 小时的 LibriSpeech 数据进行训练,LARGE 模型则采用 24 层 Transformer 结构,用 6 万小时的 Libri-light 数据训练。训练时间方面,BASE 模型使用 64 块 V100 显卡训练 1.6 天,LARGE 使用 128 块 V100 显卡训练 5 天。在下游 ASR 评测中,即使只用 10 分钟的有监督数据,系统仍可得到 4.8 的词错误率(Word Error Rate, WER)结果。
HuBERT 模型
图 2: HuBERT 模型结构 (Hsu et al., 2021)
HuBERT [2] 是 Meta 在 2021 年发表的模型,模型结构类似 Wav2vec 2.0,不同的是训练方法。Wav2vec 2.0 是在训练时将语音特征离散化作为自监督目标,而 HuBERT 则通过在 MFCC 特征或 HuBERT 特征上做 K-means 聚类,得到训练目标。HuBERT 模型采用迭代训练的方式,BASE 模型第一次迭代在 MFCC 特征上做聚类,第二次迭代在第一次迭代得到的 HuBERT 模型的中间层特征上做聚类,LARGE 和 XLARGE 模型则用 BASE 模型的第二次迭代模型提取特征做聚类。从原始论文实验结果来看,HuBERT 模型效果要优于 Wav2vec 2.0,特别是下游任务有监督训练数据极少的情况,如 1 小时、10 分钟。
中文預訓練模型
實驗配置我們使用 WenetSpeech [4] train_l 集的 1 萬小時中文資料作為無監督預訓練資料。資料主要來自YouTube 和Podcast,涵蓋了各種類型錄製場景、背景噪音、說話方式等,其領域主要包括有聲書、解釋、紀錄片、電視劇、訪談、新聞、朗讀、演講、綜藝和其他10 大場景。我們基於 Fairseq 工具包 [6] 分別訓練了 Wav2vec 2.0 和 HuBERT 模型,遵循 [1,2] 的模型配置,每個預訓練模型模型包括 BASE 和 LARGE 兩種大小。對於 BASE 模型,我們使用 8 張 A100 顯示卡,梯度累積為 8,模擬 64 張顯示卡進行訓練。對於 LARGE 模型,我們使用 16 張 A100 顯示卡,梯度累積為 8,模擬 128 張顯示卡進行訓練。
下游語音辨識任務驗證為了驗證預訓練模型在下游ASR 任務的效果,我們遵循ESPnet [7,8,9] 工具包中的Conformer [10] 模型實驗配置,即將預訓練模型作為特徵提取器,對於輸入語音提取預訓練模型各隱層表徵進行加權求和,得到的語音表徵將替換傳統FBank 特徵作為Conformer ASR 模型的輸入。
- Aishell 資料集
#我們使用Aishell 178 小時訓練集作為有監督資料進行訓練,分別對比了使用FBank 特徵、Wav2vec 2.0 BASE/LARGE 模型特徵和HuBERT BASE/LARGE 模型特徵的字錯誤率(Character Error Rate, CER) 結果。同時,我們額外對比了使用 WenetSpeech train_l 集 1 萬小時中文資料進行訓練時,其在 Aishell 測試集上的效果。訓練資料使用了變速(0.9、1.0、1.1 倍)和 SpecAugment 資料增廣技術,解碼方式為 beam search,使用了基於 Transformer 的語言模型進行 rescoring。
表1:不同模型在Aishell 測試集上的字錯誤率(CER%)結果
根據表1 結果可以看到,透過結合萬小時無監督資料訓練的預訓練模型,下游ASR 任務效果均有顯著提升。尤其是使用 HuBERT LARGE 模型時,在 Test 集上得到約 30% 的 CER 相對提升,實現了目前在 178h 有監督訓練資料下業界最佳結果。
- WenetSpeech 資料集
我們使用WenetSpeech train_s 集100 小時中文資料作為有監督資料進行訓練,分別比較了使用FBank 特徵、Wav2vec 2.0 BASE/LARGE 模型特徵和HuBERT BASE/LARGE 模型特徵的字錯誤率(Character Error Rate, CER) 結果。同時,我們額外比較了使用 WenetSpeech train_m 集 1000 小時和 train_l 集 1 萬小時中文資料 FBank 特徵訓練的模型結果。訓練資料沒有使用變速或 SpecAugment 資料增廣技術,解碼方式為 beam search,沒有使用語言模型 rescoring。
表2:不同模型在WenetSpeech 測試集上的字錯誤率(CER%)結果
根據表2 結果可以看到,透過結合萬小時無監督資料訓練的預訓練模型,下游ASR 結果得到了巨大提升。尤其當使用 HuBERT LARGE 作為語音表徵提取器時,使用 100 小時有監督資料訓練的 ASR 模型要比 1000 小時基於 FBank 特徵訓練的模型效果要好,甚至接近 1 萬小時資料訓練的模型。
更多語音下游任務實驗結果請關注 GitHub 連結(https://github.com/TencentGameMate/chinese_speech_pretrain)。歡迎大家使用我們提供的中文語音預訓練模型進行研究工作,一起探索語音預訓練模型在中文和相關眾多場景下的應用。
以上是找不到中文語音預訓練模型?中文版 Wav2vec 2.0和HuBERT來了的詳細內容。更多資訊請關注PHP中文網其他相關文章!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境