研究者希望透過機器學習方法,直接從高維度非線性資料自動挖掘最有價值和最重要的內在規律(即挖掘出問題背後以 PDE 為主的控制方程式),實現自動知識發現。
近日,東方理工、華盛頓大學、瑞萊智慧和北京大學等機構的研究團隊提出了一種基於符號數學的遺傳演算法SGA-PDE,建構了開放的候選集,可以從數據中直接挖掘任意形式的控制方程式。
實驗表明,SGA-PDE 不但可以從數據中挖掘到Burgers 方程式(具有交互項),Korteweg–de Vries 方程式(KdV,具有高階導數項),和Chafee-Infante 方程式(具有指數項和導數項),而且還成功挖掘到黏性重力流問題中的具有複合函數的控制方程,以及具有分式結構的方程,而後兩者是先前方法難以發現的。 SGA-PDE 不依賴方程式形式的先驗知識,填補了複雜結構控制方程式挖掘問題的空白。該模型無需提前給定方程式候選集,利於自動知識發現演算法在未知科學問題中的實際應用。
研究以《Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE)》為題,於 6 月 1 日發表在 Physical Review Research 上。
目前常見的知識發現思路是利用稀疏迴歸,即預先給定一個封閉的候選集,然後從中選擇方程項,並組合出控制方程,如SINDy和PDE-FIND。但此類方法要求使用者預先確定方程式的大致形式,再將所有對應的微分算子作為候選集中的函數項提前給出,無法從資料中找到候選集中不存在的函數項 。最新的一些研究嘗試利用遺傳演算法擴充候選集,但是基因的重組和變異存在較大局限性,依然無法產生複雜結構的函數項(如分式結構和復合函數)
#從資料中直接挖掘開放形式控制方程的關鍵在於以一種易於計算的方式產生並表示任意形式的控制方程,並透過衡量產生的方程式與觀測資料的符合程度,來評估方程式形式的準確性,進而對挖掘的方程式進行迭代優化。因此,自動知識發現的核心問題是表示與最佳化。
表1. 自動控制方程式挖掘方法對比表
表示問題的挑戰在於:1. 如何利用有限的基礎單元來表示無限的複雜結構控制方程式(即開放候選集);2. 如何建構易於計算的控制方程式表示方法。 為了能夠自由表示任意結構的方程,研究人員將 SGA-PDE 的基本表示單元弱化到了運算元和運算符,並透過符號數學的方法,利用二元樹構建了開放候選集。
最佳化問題的挑戰在於:1. 方程式形式與方程式評估指標之間的梯度難以計算;2. 開放候選集的可行域是無窮大的,最佳化過程很難有效兼顧探索(exploration)與利用(exploitation)。為了能夠對開放候選集問題高效尋優,研究人員利用一種針對樹狀結構特殊設計的遺傳演算法來實現方程式形式的最佳化。
圖1:自動知識發現問題與SGA-PDE 示意圖
研究人員首先透過細化演算法中方程式的基本表示單元來表示開放形式的偏微分方程,將方程的表示尺度從獨立的函數項層面轉換為更基礎的運算子和運算元層級。
SGA-PDE 將控制方程式中的運算子分成雙運算子(如、-)與單運算子(如sin、cos),然後將所有潛在變數定義為運算元(如x、t、u )。研究者採用二元樹的結構將運算子與運算元組合起來,對不同的方程式進行編碼。二元樹中所有的終端節點(度為0 的葉子節點)對應於運算元,所有的非終端節點對應於運算符,其中雙運算符對應於度為2 的節點,單運算子對應度為1 的節點。
如圖2 所示,透過一種可計算字串作為連接,任何一個函數項都可以轉換為一顆二叉樹,同時,滿足一定數學規則的二元樹也可以轉換為函數項。進而一個具有多個函數項的控制方程式等價於一個由多棵二元樹組成的森林。 SGA-PDE 透過符號數學的方式,表示任何開放形式的偏微分控制方程式。此外,論文中也提出了一種隨機產生具有數學意義的二元樹的方法,可以確保產生的二元樹不會違反數學原理。
圖2:二元樹與函數項之間的表示與轉換方法
由於圖2 所示表示方法能夠將函數空間中的樣本和二元樹空間的樣本一一對應。這意味著基於符號數學的表示方法是有效且非冗餘的,可以作為遺傳演算法中編碼過程。研究者提出了一種針對樹狀結構的遺傳演算法(圖 3),從實驗數據中自動挖掘符合觀測資料的控制方程式。這種針對樹狀結構的遺傳演算法可以實現在不同層面的最佳化。
重組環節是在森林(方程式)層級最佳化,以找到二元樹(函數項)的最優組合方式。這一環節與目前常見的稀疏迴歸類別方法類似,是在封閉候選集內的尋優。
變異環節是在二元樹(函數項)層級優化,透過隨機產生不同的節點屬性,找到在給定的二元樹結構下,最優的節點屬性組合,本質上是對目前結構的利用(exploitation)。
替換環節同樣是在二元樹(函數項)層面優化,但是會產生新的二元樹結構,是對樹結構的探索(exploration),實現了完全開放候選集中的最佳化.
SGA-PDE 透過多層級的最佳化,可以兼顧二元樹拓樸結構的利用與探索,有利於高效找到最優的方程式形式。
圖3:針對樹結構的遺傳演算法
#實驗數據如圖4 所示,其中第2 列展示了物理場觀測值,是SGA-PDE 的唯一輸入資訊。第 3 列和第 4 列中的基礎一階導數可以透過對物理場觀測值差分來獲得。第 1 列為正確的方程式形式。實驗中 SGA-PDE 採用了相同的預置運算元和運算符,不需要針對特定問題進行調整,以便驗證演算法的通用性。
最終,SGA-PDE 成功從資料中挖掘到 Burgers 方程,KdV 方程,Chafee-Infante 方程,具有複合函數求導的黏性重力流控制方程,以及具有分式結構的方程。上述方程式具有指數項、高階導數項、交互項、複合函數和巢狀結構等多種複雜形式。
表2 比較了多種已有演算法在上述5 種算例中的計算結果,可見SGA-PDE 填補了挖掘複雜結構控制方程式的空白
圖4:實驗數據圖
表2 自動知識發現演算法在不同控制方程式挖掘問題中的實驗結果
為了更充分地理解SGA-PDE 的尋優過程,圖5 展示了挖掘KdV 方程式時的演化路徑。可見第 1 代產生的最優方程式與實際方程式相差甚遠。在此後演化過程中,隨著二元樹的拓樸結構以及節點意義的變異,以及函數項之間的交叉重組,最終在第31 代找到了正確的解,且此時AIC 指標已達到文中給定的收斂標準。有趣的是,如果繼續優化,則會在第 69 代找到 KdV 方程式基於複合函數求導的更簡約的表達形式。圖 6 則展示了 SGA-PDE 尋找具有分式結構控制方程式的最佳化過程。
圖5:SGA-PDE 對KdV 方程式的最佳化過程
圖6:SGA-PDE 對具有分式結構的方程式的最佳化過程
控制方程式是對領域知識的一種高效表示形式,然而許多現實問題的方程式參數甚至方程式形式都不確定,很難寫出準確的控制方程,極大限制了領域知識在機器學習中的應用。
SGA-PDE 透過符號數學的方法對方程式進行轉化,解決了任意形式的偏微分方程的表示問題。此外,SGA-PDE 採用針對二元樹設計的遺傳演算法,透過對樹的拓撲結構以及節點屬性的迭代優化,從開放域中自動挖掘符合觀測資料的控制方程式。在最佳化中,SGA-PDE 不依賴方程式形式的先驗訊息,也無需給定候選集,實現了對複雜結構方程式的自動尋優。同時,SGA-PDE 也是無梯度演算法,避免了方程式結構與損失值之間梯度難以計算的問題。
未來研究將著重於:1. 嘗試結合強化學習或組合最佳化演算法;2. 透過嵌入物理機理縮小求解空間;3. 評估並提升SGA-PDE 對稀疏資料和有雜訊資料的適用性;4. 將知識嵌入法與知識發現法融合。
論文連結(可免費取得):
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.023174
#程式碼與算例數據連結:
https://github.com/YuntianChen/SGA-PDE
#以上是方程式就是二元樹森林?從資料中直接發現未知控制方程式和物理機理的詳細內容。更多資訊請關注PHP中文網其他相關文章!

經常使用“ AI-Ready勞動力”一詞,但是在供應鏈行業中確實意味著什麼? 供應鏈管理協會(ASCM)首席執行官安倍·埃什肯納齊(Abe Eshkenazi)表示,它表示能夠評論家的專業人員

分散的AI革命正在悄悄地獲得動力。 本週五在德克薩斯州奧斯汀,Bittensor最終遊戲峰會標誌著一個關鍵時刻,將分散的AI(DEAI)從理論轉變為實際應用。 與閃閃發光的廣告不同

企業AI面臨數據集成挑戰 企業AI的應用面臨一項重大挑戰:構建能夠通過持續學習業務數據來保持準確性和實用性的系統。 NeMo微服務通過創建Nvidia所描述的“數據飛輪”來解決這個問題,允許AI系統通過持續接觸企業信息和用戶互動來保持相關性。 這個新推出的工具包包含五個關鍵微服務: NeMo Customizer 處理大型語言模型的微調,具有更高的訓練吞吐量。 NeMo Evaluator 提供針對自定義基準的AI模型簡化評估。 NeMo Guardrails 實施安全控制,以保持合規性和適當的

AI:藝術與設計的未來畫卷 人工智能(AI)正以前所未有的方式改變藝術與設計領域,其影響已不僅限於業餘愛好者,更深刻地波及專業人士。 AI生成的藝術作品和設計方案正在迅速取代傳統的素材圖片和許多交易性設計活動中的設計師,例如廣告、社交媒體圖片生成和網頁設計。 然而,專業藝術家和設計師也發現AI的實用價值。他們將AI作為輔助工具,探索新的美學可能性,融合不同的風格,創造新穎的視覺效果。 AI幫助藝術家和設計師自動化重複性任務,提出不同的設計元素並提供創意輸入。 AI支持風格遷移,即將一種圖像的風格應用

Zoom最初以其視頻會議平台而聞名,它通過創新使用Agentic AI來引領工作場所革命。 最近與Zoom的CTO XD黃的對話揭示了該公司雄心勃勃的願景。 定義代理AI 黃d

AI會徹底改變教育嗎? 這個問題是促使教育者和利益相關者的認真反思。 AI融入教育既提出了機遇和挑戰。 正如科技Edvocate的馬修·林奇(Matthew Lynch)所指出的那樣

美國科學研究和技術發展或將面臨挑戰,這或許是由於預算削減導致的。據《自然》雜誌報導,2025年1月至3月期間,美國科學家申請海外工作的數量比2024年同期增加了32%。此前一項民意調查顯示,75%的受訪研究人員正在考慮前往歐洲和加拿大尋找工作。 過去幾個月,數百項NIH和NSF的撥款被終止,NIH今年的新撥款減少了約23億美元,下降幅度接近三分之一。洩露的預算提案顯示,特朗普政府正在考慮大幅削減科學機構的預算,削減幅度可能高達50%。 基礎研究領域的動盪也影響了美國的一大優勢:吸引海外人才。 35

Openai推出了強大的GPT-4.1系列:一個專為現實世界應用設計的三種高級語言模型家族。 這種巨大的飛躍提供了更快的響應時間,增強的理解和大幅降低了成本


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

SublimeText3漢化版
中文版,非常好用