首頁 >科技週邊 >人工智慧 >Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

WBOY
WBOY轉載
2023-04-08 11:01:061041瀏覽

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

在電腦領域,提示字 (Prompt) 指的是演算法輸出之前的那段前置左向字串。例如最早 MSDOS 下的 C:>,Linux 下的~:,IPython 下面的 >>> 這些都算是提示字。在 2023 年,提示詞已經成為和大規模語言模型 (LLMs) 互動最自然直觀的方式。

如果將 ChatGPT 比喻為哈利波特小說中的絢麗魔法,那麼提示詞就像召喚魔法時的咒語。 能不能用好這個魔法,取決於你念咒語時是清晰明確,還是夾雜著 「口音」。 同樣一個魔法,念咒的人不同,威力也不盡相同。所謂一千個讀者就有一千個哈姆雷特,但一千個巫師的阿瓦達索命咒也不及佛地魔一個人念的有效(當然佛地魔念得再好也不如哈利念得有效)。

所以,能不能用好 ChatGPT 和大規模語言模型,很大程度取決於你提示詞的品質。事實上,不僅語言模型,包括幾個月前很火紅的 DALL·E,Stable Diffusion 等 AI 文字到圖片的生成模型,提示詞對其生成藝術的風格和品質也有非常大的影響。

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

(同樣是漢堡,同樣是Stable Diffusion 2.1 模型,左邊漢堡中的提示字哪怕加了"Trending on Artstation" 也令人沒有胃口。那麼問題來了,右邊的提示詞你能猜到是什麼麼?)

# #但說起提示詞,難免讓人愛恨交加。愛的人把它視為技術與藝術的融合,恨的人把它看做阻礙機器學習和 AI 前進的絆腳石。

ChatGPT 創辦人Sam Altman 認為提示字工程(Prompt Engineering)是用自然語言程式設計的黑科技,絕對是一個高回報的技能。 網路和論壇上蒐集、整理甚至高價出售、懸賞提示詞的比比皆是。很多人把提示詞看做 AIGC 這個時代的原始碼,對應的網路課程已經開始出現。

與之相對應的, 人盡所知的深度學習巨人Yann LeCun 卻認為,提示詞工程的存在是因為LLMs 對真實世界理解的不足 。他覺得 LLMs 需要提示詞只是一個臨時態,這正好說明了當前 LLMs 還有很大的改進空間。隨著 LLMs 技術的不斷革新,LLMs 很快就會具備理解真實世界的能力,到那時提示詞工程就失去了存在的價值。

未來太遠,但就目前 LLM 的發展來客觀講,提示詞的存在是有一定意義的。就像在現實世界中人與人的互動需要一定的溝通技巧一樣, 你也可以把提示詞看做人與機器互動時的溝通技巧  。好的提示詞可以幫助你在使用 LLMs 時取得更好的結果,這就像在現實世界中,口才出眾、能言善道的人往往可以更快速地協調完成工作。

儘管在 2023 年,自然語言已經魚躍成為了人和人、人和機器之間溝通的統一方式,然而與 LLM 機器 進行溝通還是比與人交談更具挑戰性。首先,LLM 無法像人類一樣理解細微差別、語氣或上下文,這意味著需要仔細設計提示詞,使其明確且易於被模型理解。你可以想像你嘰裡咕嚕對 LLM 說了一大堆,然後 LLM 冷淡地回復了一句 “說人話”。其次,由於訓練語料的限制,LLMs 在語言理解方面可能存在一定的局限性,一些現實世界中的長邏輯表達,鋪陳、反轉、甚至是簡單推理歸納在 LLMs 中不能被完美的理解和執行。而LLMs 中因為訓練語料中而產生的一些暗語(比如GPT 中最著名的"Let's think step by step / 讓我們一步一步思考" , "Below is my best shot / 下面是我最好的預測")在人與人的日常溝通間反而不常見。這些都使得提示詞工程更加複雜化,晉升為所謂的 「玄學」。

對於母語非英語的中國用戶來說,提示詞也是阻礙大家對 LLMs 嚐鮮的最大痛點。 回想 2022 年暑期 Midjourney、Stable Diffusion 在英語市場如日中天時,國內的社區反應並不熱烈。究其原因,還是因為 Midjourney、Stable Diffusion 的提示詞以英文為主,建構時需要大量的詞彙和流行文化儲備。這對於想嚐鮮的中文用戶都極為不友善。 ChatGPT 之所以能夠在中文社群中火爆,部分原因也得力於其在中文上的良好支持,這大大降低了中文使用者的門檻。漢語作為世界上使用量數一數二的語言,仍然被提示詞絆了一個小跟頭;自鄶而下,小語種究竟有多難可想而知。

總而言之,提示詞工程的存在具有它的合理性。一個好的提示詞也確實能帶來事半功倍的意義。好的提示詞能夠幫助我們了解大語言模型的能力和邊界,深入挖掘它的潛力,從而在生產實踐中更好地發揮其作用。這其中最著名的例子就是 上下文學習  (In-context learning)。

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

用魔法打敗魔法

在現實中,提示詞的最佳化過程需要反覆試錯迭代,極為繁瑣;還需要一定的知識儲備。這就不禁讓人發問,在 AI 當道的今天,提示詞能不能也自動生成?

在Yann LeCun 抨擊提示詞的推文回覆裡,我們注意到了這條回應:「提示詞工程就如同對科學中對待一個問題的描述和定義;同一個問題,在不同人的描述下,或優或劣、或易或難、或可解或不可解。所以,提示詞工程的存在並沒有錯,而且提示詞工程本身也可以被自動化。」這位網友同時也給了一個產品: 「最美提示詞」(PromptPerfect.jina.ai)。 也就是說,這個 用演算法來最佳化提示字 的新典範已經成功實現了!

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

體驗連結:https://promptperfect.jina.ai

這條回覆中提到的promptperfect.jina.ai 用魔法馴化魔法,讓AI 指導AI,當你輸入提示詞後,它就會輸出優化後的「最美提示詞」,並讓你預覽優化前後的模型輸出。這樣就實現了從 “garbage-(prompt)-in-garbage-(content)-out” 到 “好輸入 - 好輸出” 的良性循環。根據產品的官方文件介紹,其不僅支援當下最火的 ChatGPT 提示詞優化,還支援 GPT 3、Stable Diffusion、Dall-E。接下來就讓我們來測評這位 「AI 提示詞工程師」 — 最美提示詞(PromptPerfect)究竟有哪些科技與狠活。

如何在 10 秒內輕鬆優化提示詞?

1、將口語需求變成條理清晰的提示詞

優化提示詞需要理解語言的構造,知道哪些句子哪些字能夠「啟動」 LLMs 的智能。如果沒有這些儲備,提示詞含糊不清,如口語一團亂麻,那麼就容易被 LLM 帶溝裡。 「最美提示詞」 可以從大量資料中學習並深入理解更深刻的語言知識,以產生更準確、清晰、有效的提示詞,不管想要什麼樣的需求和任務,都能  直接量身定制,提供最精準的表達。

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

當面對GPT3 或ChatGPT 時,提示詞卡殼可能是因為溝通能力有限,難以表達清晰的問題或指令,嚴重影響模型的回答品質。我們嘗試用「最美提示詞」優化一些常見指令,如下圖,「最美提示詞」 把原本簡略粗糙的提示詞「請給我發一些賺錢思路」 進行了上下文的擴展,輸出了一條堪稱完美的提示詞:

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

手動輸入靠運氣


Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

#使用「最美提示詞」靠科技

相比原始提示詞,「最美提示詞」 定義了明確的目標、清晰的產出,還給ChatGPT 補充了情境式鋪墊的邏輯 ,使得ChatGPT 產生的措施更具實操性,效果的確肉眼可見地得到了大幅改善。

2、輕鬆拿捏不同的LLMs/LMs 的「話術」

不同的LLMs 有不同的脾氣和習慣,想要與他們進行有效溝通,就需要學會當地的話術。否則就很容易形成雞同鴨講。就好比當你好不容易掌握了 Stable Diffusion 咒語,結果發現 ChatGPT 的對話方式就完全不同,一切積累從頭再來。 「最美提示詞」 幫用戶就免去了不同模型的學習成本,不論是ChatGPT、GPT 3、Stable Diffusion 還是Dall·E 等, 只要選擇模型,就可以一鍵就能優化最適合的提示詞。

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

#3、中文提示字一鍵最佳化產生完美英文提示字

跟單模態的ChatGPT 比起來,在AI 繪畫領域,英文說不好就是難下筆。就算囤了一堆提示詞,也可能因為詞彙量不夠,不知道該怎麼描述,找不到合適的提示詞而鬱悶。 「最美提示詞」  可以把你用中文想的提示詞直接變成英文的提示詞 ,讓你用起來更順手,效果也更棒,不用再費勁去學各種英文形容詞,中文用戶也能輕鬆上手。有時候我們用 DALL・E 或 Stable Diffusion 產生圖片時,會覺得很難出效果。這可能是因為我們英文不夠好,也可能想像力不夠豐富,沒辦法想出具體的圖像或場景。所以出來的圖片就很模糊或很奇怪。

我們試著用「最美提示詞」優化一些常見指令,比如說,下圖,「最美提示詞」把原來簡單粗糙,略顯無聊的「印象派的北京街景」 改成了一句帶有豐富描述,超讚的英文!

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

優化前的提示詞完全顯示不出來印象派、耳機、未來風格

AI 繪畫的提示詞測試起來更加一目了然, 「最美提示詞」產生了冗長但無比精準的“咒語”,直接提升了原始提示詞的審美、想像和閱歷,使得畫面更生動,更準確地表達了我們原本的期望。

4、開發者可直接呼叫的API

想要大批量最佳化提示詞,或直接在現有系統中集成,那麼 可以直接調用「最美提示詞」的API ,這樣可以更快地產生批量的優質提示詞 

,不管你需要多少個提示詞,「最美提示詞」都能為你快速完成,提供最優質的服務。

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

背後的技術與團隊我們注意到「最美提示詞」自2 月28日一推出以來,就引發了大量關注,大家都想要用它來優化各種場景的提示詞。短短 幾天之內 就吸引了 數千用戶 

優化了近萬提示詞,在各類平台狂攬好評。畢竟只要用了它生成的提示詞,就能讓大模型出來的東西既有創意又有美感。 「最美提示詞」要為各種語言模型找到最好的提示詞,它用了兩招高階的機器學習技術: 強化學習與情境學習 

。強化學習就是它的教練,一直在灌輸它知識和經驗,讓它變得越來越厲害。它先用一些人工篩選的提示詞給一個預訓練模型打好基礎,再根據使用者輸入和模型輸出來調整提示詞網路策略。比方說,當我們要優化 DALL・E 和 Stable Diffusion 的提示詞時,我們要讓生成的內容既有關聯又有美感,就像教練要求運動員在各方面都表現得非常優秀。

###上下文學習就是它的老師,透過多個例子來教它怎麼學。但它不是把所有的例子都堆在一起,而是把很多的例子分成幾組,然後讓語言模型自己去編碼。這樣「最美提示詞」就可以用更多的例子來教模型,從而產生更準確、更有效的提示詞。透過這兩招,「最美提示詞」就可以為各種語言模型優化提示詞,顯著提升效率和準確度,就像一個由教練和老師一起培養出來的頂尖運動員。 ######

這種大規模的生成式模型,無論是語言生成模型或是多模態的生成式模型,在目前是以語言為主。 然而,在未來,我們肯定會看到更多多模態的生成式模型的出現。 我們發現「最美提示詞」的研發團隊其實正是專注於多模態AI 的新興科技公司Jina AI ,成立於2020 年,總部位於德國柏林,在北京深圳均設有研發。 Jina AI 專注於多模態AI 技術研發,在搜尋和生成領域都有廣泛的應用,此前Jina AI 已經發布了一系列如下的開源的項目,在GitHub 累計收到來自全球開發者將近四萬星星的關注,為開發者快速實現多模態AI 應用提供了方便:

  • #多模態MLOps 框架Jina: #https:// github.com/jina-ai/jina
  • 專為多模態資料而生的資料結構DocArray: github.com/docarray/docarray
  • CLIP-as-service: github.com/jina-ai/clip-as-service

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

在這個生成式AI 海嘯般地突破了多種模態壁壘的時代,「最美提示詞」可直接提高大模型生產力,帶來效率上地顯著提升,我們同樣注意到Jina AI 也研發了Rationale(rationale.jina.ai),基於ChatGPT 的AI 決策工具,只要輸入心中所想的一個或幾個決策,Rationale 10 秒內就能為你產生一份專屬的決策評估報告。它可以用於諮詢、評測、研究、規劃、報告等場景,提高決策效率。作為一款具有「批判性思考」 的人工智慧決策工具,Rationale 能透過幫助大家列出不同決策的優缺點、產生SWOT 報告、進行多標準分析或因果分析等拓寬思路、提煉觀點,做出理性的決策。 2023 年或將成為新創公司改變遊戲規則的一年。

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行

體驗連結:https: //rationale.jina.ai

隨著ChatGPT API 的開放,2023 年針對C 端的AI 應用就像2000 年網路時代一樣,形成井噴式大爆發:每天都有數以百計的ChatGPT API 的應用面世,它們遍布各個領域,打破了現有的規則,並顛覆了多個領域的生態。一些傳統巨頭面臨挑戰,一些傳統的壁壘面臨打破,一些傳統產業面臨革新。而對我們來說,想要在AI 新時代站穩腳跟,就得站在巨人的肩膀上,吟誦出完美的咒語,用魔法來解決各類生成任務,畢竟完美的提示詞就是一個ChatGPT 應用的靈魂所在。

以上是Prompt Engineering全面自動化:LeCun看了沉默,ChatGPT看了直呼內行的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:51cto.com。如有侵權,請聯絡admin@php.cn刪除