搜尋
首頁科技週邊人工智慧筆記本就能運行的ChatGPT平替來了,附完整版技術報告

GPT4All 是基於大量乾淨的助手資料(包括程式碼、故事和對話)訓練而成的聊天機器人,資料包括~800k 條GPT-3.5-Turbo 產生數據,基於LLaMa 完成,M1 Mac、Windows 等環境都能運行。或許就像它的名字所暗示的那樣,人人都能用上個人 GPT 的時代已經來了。

自從 OpenAI 發布 ChatGPT 後,最近幾個月聊天機器人熱度不減。

雖然 ChatGPT 功能強大,但 OpenAI 幾乎不可能將其開源。不少人都在做開源的努力,像是前段時間 Meta 開源的 LLaMA。其是一系列模型的總稱,參數量從 70 億到 650 億不等,其中,130 億參數的 LLaMA 模型「在大多數基準上」可以勝過參數量達 1750 億的 GPT-3。

LLaMA 的開源可是利好眾多研究者,例如史丹佛在LLaMA 的基礎上加入指令微調(instruct tuning),訓練了一個名為Alpaca(羊駝)的70 億參數新模型(基於LLaMA 7B )。結果顯示,只有 7B 參數的輕量級模型 Alpaca 效能可媲美 GPT-3.5 這樣的超大規模語言模型。

又例如,我們接下來要介紹的這個模型 GPT4All,也是一種基於 LLaMA 的新型 7B 語言模型。專案上線兩天,Star 量已經突破 7.8k。

筆記本就能運行的ChatGPT平替來了,附完整版技術報告

專案網址:https://github.com/nomic-ai/gpt4all

簡單來講,GPT4All 在GPT-3.5-Turbo 的800k在以資料上進行訓練,包括文字問題、故事描述、多輪對話和代碼。

根據項目顯示,M1 Mac、Windows 等環境都能運作。

筆記本就能運行的ChatGPT平替來了,附完整版技術報告

我們先來看看效果。如下圖所示,使用者可以和GPT4All 進行無障礙交流,例如詢問該模型:「我可以在筆記本上運行大型語言模型嗎?」GPT4All 回答是:「是的,你可以使用筆記本來訓練和測試神經網絡或其他自然語言(如英語或中文)的機器學習模型。重要的是,你需要足夠可用的記憶體(RAM) 來適應這些模型的大小…」

接下來,如果你不清楚到底需要多少內存,你還可以繼續詢問GPT4All,然後它給出答案。從結果來看,GPT4All 進行多輪對話的能力還是很強的。

筆記本就能運行的ChatGPT平替來了,附完整版技術報告

在M1 Mac 上的即時取樣

有人將這項研究稱為「改變遊戲規則,有了GPT4All 的加持,現在在MacBook 上本地就能運行GPT。」

筆記本就能運行的ChatGPT平替來了,附完整版技術報告

與GPT-4 相似的是,GPT4All 也提供了一份「技術報告」。

筆記本就能運行的ChatGPT平替來了,附完整版技術報告

技術報告網址:https://s3.amazonaws.com/static.nomic.ai/gpt4all/2023_GPT4All_Technical_Report.pdf

#這份初步的技術報告簡要描述了GPT4All 的搭建細節。研究者公開了收集的資料、資料整理程序、訓練程式碼和最終的模型權重,以促進開放研究和可重複性,此外還發布了模型的量化4 位(quantized 4-bit)版本,這意味著幾乎任何人都可以在CPU 上運行該模型。

接下來,讓我們看看這份報告中寫了什麼。

GPT4All 技術報告

1、資料收集與整理

在2023 年3 月20 日至2023 年3 月26 日期間,研究者使用GPT-3.5-Turbo OpenAI API 收集了約100 萬對prompt 回答。

首先,研究者透過利用三個公開可用的資料集來收集不同的問題 /prompt 樣本:

  • LAION OIG 的統一chip2 子集
  • Stackoverflow Questions 的一個隨機子樣本集Coding questions
  • Bigscience/P3 子樣本集進行指令調優

筆記本就能運行的ChatGPT平替來了,附完整版技術報告

筆記本就能運行的ChatGPT平替來了,附完整版技術報告

##############################################################################################################” ####參考史丹佛大學Alpaca 計畫(Taori et al., 2023),研究者對資料準備和整理給予了大量關注。在收集了最初的 prompt 產生對的資料集後,他們將資料載入到 Atlas 進行整理和清理,刪除了所有 GPT-3.5-Turbo 未能回應 prompt 並產生畸形輸出的樣本。這使得樣本總數減少到 806199 個高品質的 prompt - 產生對。接下來,研究者從最終的訓練資料集中刪除了整個 Bigscience/P3 子集,因為它的輸出多樣性非常低。 P3 包含許多同質化的 prompt,這些 prompt 從 GPT-3.5-Turbo 產生了簡短而同質化的反應。 ######這個排除法產生了一個包含 437,605 個 prompt - 產生對的最終子集,如圖 2 所示。 ##################模型訓練#########研究者在LLaMA 7B (Touvron et al., 2023) 的一個實例中將幾個模型進行微調。他們最初的公開版本相關的模型是用 LoRA (Hu et al., 2021) 在 437605 個後處理的例子上以 4 個 epoch 訓練的。詳細的模型超參數和訓練程式碼可以在相關的資源庫和模型訓練日誌中找到。 #########可重複性#########研究者發布了所有的資料(包括未使用的 P3 generations)、訓練程式碼和模型權重,供社群進行複現。有興趣的研究者可以在 Git 儲存庫中找到最新的資料、訓練細節和檢查點。 #########成本#########研究者大概花了四天的時間製作這些模型,GPU 成本為800 美元(從Lambda 實驗室和Paperspace 租的,其中包括幾次失敗的訓練),此外還有500 美元的OpenAI API 費用。 ######最終發布的模型 gpt4all-lora 可以在 Lambda 實驗室的 DGX A100 8x 80GB 上用大約 8 小時訓練完成,總成本為 100 美元。 ######這個模型可以在普通筆記本上運行,真就像網友說的「除了電費之外,沒有任何成本。」###############評估## ####研究者使用SelfInstruct 論文(Wang et al., 2022) 中的人類評估資料對此模型進行了初步評估。報告還對比了該模型與已知最好的公開的 alpaca-lora 模型(該模型由 huggingface 的用戶 chainyo 提供)的 ground truth 困惑度。他們發現,所有的模型在少數任務上都有非常大的困惑度,並且報告的困惑度最大為 100。與 Alpaca 相比,在這個收集的資料集上進行微調的模型在 Self-Instruct 評估中表現出了更低的困惑度。研究者表示,這個評估不是詳盡的,仍有進一步的評估空間 —— 他們歡迎讀者在本地 CPU 上運行該模型(文件見 Github),並對它的能力有一個定性的認識。 ######最後,需要注意的是,作者公佈了數據和訓練細節,希望它能加速開放的 LLM 研究,特別是在對齊和可解釋性領域。 GPT4All 模型的權重和數據僅用於研究目的,並獲得許可,禁止任何商業使用。 GPT4All 是基於 LLaMA 的,LLaMA 具有非商業許可。助理資料是從 OpenAI 的 GPT-3.5-Turbo 收集的,其使用條款禁止開發與 OpenAI 進行商業競爭的模型。 ###

以上是筆記本就能運行的ChatGPT平替來了,附完整版技術報告的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
閱讀AI索引2025:AI是您的朋友,敵人還是副駕駛?閱讀AI索引2025:AI是您的朋友,敵人還是副駕駛?Apr 11, 2025 pm 12:13 PM

斯坦福大學以人為本人工智能研究所發布的《2025年人工智能指數報告》對正在進行的人工智能革命進行了很好的概述。讓我們用四個簡單的概念來解讀它:認知(了解正在發生的事情)、欣賞(看到好處)、接納(面對挑戰)和責任(弄清我們的責任)。 認知:人工智能無處不在,並且發展迅速 我們需要敏銳地意識到人工智能發展和傳播的速度有多快。人工智能係統正在不斷改進,在數學和復雜思維測試中取得了優異的成績,而就在一年前,它們還在這些測試中慘敗。想像一下,人工智能解決複雜的編碼問題或研究生水平的科學問題——自2023年

開始使用Meta Llama 3.2 -Analytics Vidhya開始使用Meta Llama 3.2 -Analytics VidhyaApr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移動AI的飛躍 Meta最近公佈了Llama 3.2,這是AI的重大進步,具有強大的視覺功能和針對移動設備優化的輕量級文本模型。 以成功為基礎

AV字節:Meta' llama 3.2,Google的雙子座1.5等AV字節:Meta' llama 3.2,Google的雙子座1.5等Apr 11, 2025 pm 12:01 PM

本週的AI景觀:進步,道德考慮和監管辯論的旋風。 OpenAI,Google,Meta和Microsoft等主要參與者已經釋放了一系列更新,從開創性的新車型到LE的關鍵轉變

與機器交談的人類成本:聊天機器人真的可以在乎嗎?與機器交談的人類成本:聊天機器人真的可以在乎嗎?Apr 11, 2025 pm 12:00 PM

連接的舒適幻想:我們在與AI的關係中真的在蓬勃發展嗎? 這個問題挑戰了麻省理工學院媒體實驗室“用AI(AHA)”研討會的樂觀語氣。事件展示了加油

了解Python的Scipy圖書館了解Python的Scipy圖書館Apr 11, 2025 am 11:57 AM

介紹 想像一下,您是科學家或工程師解決複雜問題 - 微分方程,優化挑戰或傅立葉分析。 Python的易用性和圖形功能很有吸引力,但是這些任務需要強大的工具

3種運行Llama 3.2的方法-Analytics Vidhya3種運行Llama 3.2的方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

Meta's Llama 3.2:多式聯運AI強力 Meta的最新多模式模型Llama 3.2代表了AI的重大進步,具有增強的語言理解力,提高的準確性和出色的文本生成能力。 它的能力t

使用dagster自動化數據質量檢查使用dagster自動化數據質量檢查Apr 11, 2025 am 11:44 AM

數據質量保證:與Dagster自動檢查和良好期望 保持高數據質量對於數據驅動的業務至關重要。 隨著數據量和源的增加,手動質量控制變得效率低下,容易出現錯誤。

大型機在人工智能時代有角色嗎?大型機在人工智能時代有角色嗎?Apr 11, 2025 am 11:42 AM

大型機:AI革命的無名英雄 雖然服務器在通用應用程序上表現出色並處理多個客戶端,但大型機是專為關鍵任務任務而建立的。 這些功能強大的系統經常在Heavil中找到

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器